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1. INTRODUCTION 

1.1.  Background 

 Over the years bridge engineers have been concerned about the response of prestressed 

concrete (PC) girder bridges that have been hit by over-height vehicles or vehicle loads.  

According to (Shanafelt and Horn, 1980), for each year, about 200, PC-girder bridges in the 

United States are damaged.  About 162 of these bridges are damaged by over-height vehicles or 

vehicle loads.  The actual number of impacts was expected to be significantly higher than these 

numbers since many minor collisions are not reported.  When a bridge is struck by an over-

height vehicle, usually the outside and in some instances one or more of the interior bridge 

girders are damaged.  

Historically, engineers with the Office of Bridges and Structures of the Iowa Department 

of Transportation (Iowa DOT) have required the use of reinforced concrete (RC), intermediate 

diaphragms in all PC-girder bridges that cross over highways.  The use of RC intermediate 

diaphragms by the Iowa DOT is based on an intuitive damage assessment of the PC bridge 

girders that is caused by impacts from over-height traffic beneath the bridge.  Bridge engineers 

with the Iowa DOT believe that the larger mass, stiffness and damping characteristics of a RC, 

intermediate diaphragm, when compared to those characteristics of a steel, intermediate 

diaphragm, provide a greater degree of impact protection for the bridge girders.     

Bridge contractors have always expressed a desire to substitute steel, intermediate 

diaphragms for the RC, intermediate diaphragms in order to reduce the construction time and to 

simplify the construction process for PC girder bridges.  With the continued use of PC sub-deck 

panels for the bridge decks that are constructed in Iowa, precast-concrete manufacturers have 

renewed their desire to have the current-design policy regarding intermediate diaphragms 
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changed to permit the use of a simpler configuration for a steel intermediate diaphragm in place 

of a RC intermediate diaphragm. 

 In July of 1989, the Iowa Highway Research Board sponsored a research project whose 

objective was to investigate the behavior of steel and RC, intermediate diaphragms. Design 

alternatives for a steel, intermediate diaphragm that could be used in place of a RC, intermediate 

diaphragm were documented in the final report (Abendroth et al., 1991) of that work.  One 

configuration for a steel, intermediate diaphragm was reported to essentially provide the same 

behavioral response to statically applied, lateral forces as that provided by the RC, intermediate 

diaphragm.  However, the recommended steel diaphragm was not used by bridge contractors due 

to the complexity of the steel bracket assembly that was needed to match the profile of a PC 

girder. 

 The Office of Bridges and Structures of the Iowa DOT recently developed a steel, 

intermediate diaphragm that was a modification of the suggested diaphragm (Abendroth et al., 

1991).  The modified steel diaphragm was used for the West Town Parkway Bridge in West Des 

Moines that has Iowa LXD girders and in the Mason City bypass bridge that has 72-in.-deep, 

bulb-tee PC girders.  The configuration of this diaphragm is presented later in this report.  Both 

of these two bridges have highway traffic beneath them; however, the height clearance beneath 

these bridges is greater than usual.  Therefore, the possibility of impacts to the PC girders of 

these two bridges by an over-height vehicle is minimal.  

 
1.2.  Problem statement 

 Intermediate diaphragms for PC girder bridges provide stability to the girders during 

bridge construction, contribute to the lateral distribution of vertical wheel loads that are applied 

to the bridge deck of multi-girder bridges, and help to distribute lateral-impact forces from over-
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height vehicles or vehicle loads.  Previous research and publications regarding girder stability 

and vertical-load distribution have adequately addressed these two topics.  Very few publications 

have discussed the behavior of PC girder bridges with different types of intermediate diaphragms 

when a bridge is subjected to lateral loads.  The work presented in this report addresses this 

concern, and discusses whether a steel, intermediate diaphragm with simple connections to the 

PC girders provides essentially the same degree of damage protection as that provided by the 

RC, intermediate diaphragm currently being used by the Iowa DOT.  

 
1.3.  Objective and scope 
 

The overall objectives of this work involve extensive and detailed analytical studies.  No 

experimental work was conducted during this research program.  However, published test results 

for similar structures were used to calibrate the theoretical findings.  The following research 

objectives have been identified: 

• Review and evaluate the state-of-the-art regarding the role of intermediate 

diaphragms in distributing lateral loads through out PC girder bridges. 

• Investigate the performance of different types and configurations of intermediate 

diaphragms in PC girder bridges. 

• Recommend an efficient type of steel, intermediate diaphragm that can be used as an 

alternate for a RC, intermediate diaphragm in Iowa, PC-girder bridges.  The selected 

steel diaphragm should essentially maintain the same degree of damage protection for 

the PC girders as that provided by a RC diaphragm, when over-height vehicles or 

vehicle loads impact against the bottom flange of the bridge girders. 

Verification of the accuracy of any analytical analysis, such as a finite-element analysis, 

is necessary to gain confidence in the modeling technique that is used for the finite-element 
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method.  Thus, a comparison was made by the ISU researchers between the measured strain and 

displacement results that were obtained for an experimental bridge, which was tested during the 

earlier ISU research (Abendroth et al., 1991), and those predicted results that were obtained from 

the finite-element model, which was developed during this new research, for the same bridge.  

Several types of intermediate diaphragm were modeled and studied in the comparison.  The 

finite-element models were analyzed for the same cases of loading that were used for the testing 

the experimental-bridge model.  A description of the experimental bridge model, finite-element 

model, and experimental and analytical results are presented in this report.  

 The finite-element-modeling techniques that were applied during the verification study 

were then used to analyze two in service bridges.  Each model represented a PC girder bridge 

with similar properties and dimensions that were used by the Iowa DOT for this type of a bridge.  

One of the models was for a skewed bridge and the other model was for a non-skewed bridge.  

Each of these bridge models was analyzed considering different types of intermediate 

diaphragms.  Complete descriptions of the finite-element models and the loading cases used in 

the analysis are presented in this report.  Predicted strain and displacement responses of the 

bridges were calculated and compared for each of the different diaphragm types. 

 
1.4.  Literature review 

 A literature review was conducted on the topics related to the behavior of PC-girder 

bridges that were subjected to lateral-impact loads.  The search also covered the topics related to 

the effectiveness of intermediate diaphragms in distributing lateral load.  The search focused on 

the use of RC or steel diaphragms in resisting lateral-impact loads that might result from an over-

height vehicle or vehicle load passing beneath a bridge.  In addition, the available publications 
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discussing the crash tests (crashworthiness) conducted on vehicles were reviewed to study the 

techniques used in modeling the impact load resulting from collisions.   

 Several domestic and international databases were utilized in this search.  Among the 

domestic databases were the NTIS (National Technical Information Service), EI Compendex, 

GSCI (General Science Abstract), ASTI (Applied Science and Technology Abstracts), the ASCE 

civil engineering database, Journal of Structural Engineering, the Northwest Transport Catalog, 

and the Iowa State University Catalog.  Although there was a large number of publications that 

discuss the existence of intermediate diaphragms in bridges, a very few number of these 

publications were concerned about the role of diaphragms in distributing lateral loads.  Most of 

the literature found was discussing the effectiveness of diaphragms when a bridge is subjected to 

normal traffic load.  Very few publications discussed the use of steel diaphragms in conjunction 

with PC girder bridges.   

 Different opinions were noticed in the publications discussing whether the intermediate 

diaphragms are essential in the PC-girder bridges.  Although Article 9.10.2 in the Standard 

Specifications for Highway Bridges (AASHTO, 1996) requires the use of intermediate 

diaphragms at the points of maximum moments for spans over than 40 ft, clear reasons for such 

requirements were not given.  

 Wei (1959) conducted an analytical study of a simple-span, non-skewed, I-beam bridge, 

which had a concrete roadway slab that was continuous over steel stringers.  Steel, intermediate 

diaphragms, which may be in the form of steel channel, a WF-beam, or a built-up section were 

inserted in the bridge at different locations.  The study was conducted under several types of 

vertical loading including a single load, a standard-truck load, and a four-wheel-truck load.  Wei 

found that in the case of the single and standard-truck load, the addition of diaphragms reduces 
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the maximum moments in the interior beams.  On the contrary, when the diaphragms are used in 

the case of the four-wheel-truck load, the maximum moment increased in the girders.   

 The effectiveness of diaphragms in distributing the load was investigated by 

Sithichaikasem and Gamble (1972) and Wong and Gamble (1973).  These investigations 

involved analytical studies to determine the effectiveness of diaphragms in distributing loads in 

simple and continuous, PC-girder and slab, highway bridges.  Sithichaikasem and Gamble 

focused on a simple-span bridge case.  Some of their results were: 

• Diaphragms cause an increase in the maximum moment in the bridge girders in the 

case when the outer line of the wheels can fall directly over the exterior girders.  

Thus, their recommendation was to eliminate intermediate diaphragms. 

• The location and spacing of diaphragms should not be a function of the span length 

alone.  In many cases diaphragms are more effective in short bridges than longer 

ones. 

• The flexural stiffness of the diaphragms should be carefully selected.  Diaphragms 

that have a flexural stiffness greater than an optimum value may increase the 

moments in the girders.    

Wong and Gamble, 1973, conducted a similar analysis for a continuous bridge.  Some of their 

results were: 

• An improvement of the load-distribution characteristics was noticed in the case of 

bridges that have a large, beam-spacing-to-span-length ratio. 

• In most cases, intermediate diaphragms are harmful to PC girders. 

There appears to be conflicting evidence as to whether the diaphragms are damage-limiting or 

damage-spreading members.  Sithichaikasem and Gamble (1972) and Wong and Gamble (1973) 
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suggested that the diaphragms currently being used in bridges are probably the wrong shape and 

size and are usually in the wrong locations. 

Sengupta and Breen (1973) studied the effectiveness of using diaphragms in PC-girder 

and slab bridges.  The cast-in-place, concrete diaphragm was the only type of diaphragm that 

was discussed in this research.  Their experimental research was conducted by testing four, 

1/5.5-scale, micro-concrete, simple-span, model bridges with a series of vertical and lateral 

loads.  The variables that were considered for their tests were the length of the bridge, the skew 

angle, and the locations for intermediate diaphragms.  These authors tested four models with and 

without intermediate diaphragms under cyclic and impact loads.  Several simplified analytical 

models were used to complete the objectives of their work.  The following findings were 

documented by these authors: 

• The use of diaphragms increased the design moments for the exterior girders and 

reduced the design moment for interior girders.  The diaphragms were found to be 

more effective in reducing the girder moments in the case of bridges with large, 

girder-spacing-to-span ratios and large, girder-stiffness-to-slab-stiffness ratios. 

• Vertical, static-load tests revealed that bridges of this type can carry considerable 

overloads without causing any considerable damage to the girders. 

• End diaphragms greatly increase both the ultimate and concrete-cracking loads. 

• When bridges were subjected to sustained-cyclic load, diaphragms did not influence 

the dynamic amplifications (natural frequency) of the bridges and no effect was 

observed on the damping coefficient of bridge vibration. 
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• Testing with a lateral-impact load hitting the bottom flange of an exterior girder, 

revealed that the diaphragms reduce the energy-absorption capacity of the girders, 

which makes the girders more vulnerable to be damaged from the lateral impact. 

Based on these conclusions, Sengupta and Breen (1973) recommended the removal of 

intermediate diaphragms in PC-girder bridges.  End diaphragms were recommended to be 

provided in bridges unless an alternative can be used such as a thickening of the end slab or 

providing additional reinforcement in the slab for the approach-span zone. 

 Kostem and Decasto (1977) performed a finite-element analysis for two existing, simple-

span, non-skewed, PC-girder bridges.  The analysis focused on the effect that diaphragms had on 

the lateral distribution of vertical live loads.  An HS20-44 truck was placed near the mid-span of 

the bridge to produce maximum bending moment at the mid-span.  The load was moved laterally 

to simulate the effect of different lane loading.  The following results were documented by 

Kostem and DeCastro: 

• Mid-span diaphragms are not fully effective in the lateral distribution of live load for 

PC girder bridges. 

• Increasing the number of diaphragms along the length of the bridge does not 

necessarily correspond to a more uniform distribution of the load at the maximum-

moment sections. 

• When all bridge lanes were loaded, diaphragms do not noticeably contribute to the 

lateral distribution of live load. 

Cheung, et al. (1986) reported that there was a disagreement on the effectiveness of 

intermediate diaphragms in laterally distributing the vertical load.  The economic impact on the 

bridge cost with and without intermediate diaphragms was also addressed in some literature such 
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as McCathy, et al. (1979).   These authors determined that if the intermediate diaphragms are 

omitted, a reduction of three to five percent is expected in the costs of bridge superstructures. 

Analytical investigations that addressed vehicle collisions were also conducted using a 

number of finite-element, computer programs that have several, dynamic-analysis capabilities, 

which are not available in ANSYS (DeSalvo and Swanson, 1985).  Because of these 

programming differences, these publications were not very useful in providing a guide for 

techniques to model an impact load that results from a vehicle striking an object.  Several 

crashworthiness publications (Abdullatif, et al., 1996; Nalepa, 1960; Doong and Cheng, 1994; 

Omar, et al., 1998; and Johnson, et al., 1992) provided some information regarding the properties 

and duration time of an impact load. 

 
1.5. Review of current department of transportation practice 

 
 In addition to the literature search, a survey was conducted of the departments of 

transportation in several states to obtain information related to the design and use of intermediate 

diaphragms for bridges.  A copy of the questionnaire that was used in the survey and the 

responses to the questionnaire are presented in Appendix A.  The questionnaire addressed the 

following topics: 

• Whether a bridge-design agency is currently using or has ever used intermediate 

diaphragms in PC girder bridges. 

• Types of intermediate diaphragms that are currently used by each agency when a 

bridge is passing over a highway, navigable waterway, railway, or a grade separation 

that has no traffic beneath the bridge. 

• Design criteria used for intermediate diaphragms. 
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• Design criteria used for the connections between diaphragms and the bridge deck or 

and/or girders. 

• Performance evaluation of each diaphragm type in minimizing the damage to PC 

girders that is caused by a lateral impact from an over-height load passing beneath the 

bridge. 

Approximately 75 percent of the agencies that were contacted responded to the survey.  

Almost 95 percent of the respondents said that they are currently using intermediate diaphragms 

in PC girder bridges.  Less than 40 percent of these agencies use structural-steel intermediate 

diaphragms in PC girder bridges.  The reason for using structural-steel diaphragms varied 

between agencies.  About 40 percent of them claimed that bridge contractors have not chosen to 

use a reinforced concrete diaphragm, while 70 percent of the agencies use steel diaphragms for 

different reasons.  The most common reasons given by agencies for using steel diaphragms were 

that they were faster, easier and cheaper to install than cast-in-place RC diaphragms.  One of the 

reasons of using steel diaphragms was to provide stability for the structure during construction.   

About 95 percent of the respondents said that their agencies permit using cast-in-place 

RC diaphragms in PC girder bridges passing over highways, while 75 percent of the respondents 

claimed that their agencies permit the use of different types of steel diaphragms for the same type 

of bridges in the same situation.  In the case of a PC bridge crossing a navigable waterway, 

almost 90 percent of the agencies said they permit using cast-in-place RC diaphragms, while 

about 65 percent of the agencies permit the use of different types of steel diaphragms.  The 

agency responses for diaphragm use when a bridge is over a railroad right-of-way were almost 

the same as those given for a bridge crossing a highway.  Approximately 90 percent of the 

agencies permit using the cast-in-place RC diaphragm when a PC-girder bridge passes over a 
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grade separation that has no traffic (highway, water or rail), while 70 percent of the agencies said 

they permit the use of steel diaphragms in the same case. 

When the agencies were asked whether intermediate diaphragms are used for temporary 

lateral support of the PC girders during the bridge construction, about 90 percent of the 

respondents gave a positive answer.  About 70 percent of the respondents said they do not use 

intermediate diaphragms to minimize the damage to PC girders that could be caused by an 

impact from an over-height vehicle or vehicle load passing beneath the bridge.  Although 25 

percent of the agencies said they have developed a structural-steel diaphragm that can be used as 

an alternate to a RC or PC diaphragms in PC-girder bridges, almost none of these agencies have 

any specific criteria in designing these steel diaphragms or their connections with the bridge deck 

and/or girders.  The bridge-design agencies were asked to rate each intermediate- diaphragm type 

based on its overall performance in minimizing the damage to the PC girders caused by a lateral 

impact from an over-height load passing beneath the bridge.  About 80 percent of the 

respondents, which rated a cast-in-place, RC diaphragm, rated this type of a diaphragm as good 

or excellent.  Among the respondents, which rated the steel diaphragms, 90 percent of these 

respondents rated steel diaphragms as average and good.   

Each bridge-design agency was asked to attach a copy of the standard details and 

specifications that they use for all types of intermediate diaphragms for PC-girder bridges.  

About 75 percent of the respondents included a copy of their standard details and specifications 

for the types of diaphragms that are currently used by their agencies in PC-girder bridges.  The 

majority of the details were for cast-in-place concrete diaphragms.  The types of steel 

diaphragms included steel-channel diaphragms, bent-plate (channel shape) diaphragms, and 
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cross-braced diaphragms with or without a horizontal strut.  These drawings were reviewed for 

information that might be helpful in conducting this research. 
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2.   EXPERIMENTAL BRIDGE MODEL 

2.1.  Introduction 

 The advancements in computer technology and finite-element programs has permitted the 

analysis of complex structures.  However, the accuracy of the results of any finite-element 

analysis depends on the knowledge and experience of the person conducting such an analysis.  

Therefore, a comparison of finite-element results to published experimental-test results or to 

well-documented, analytical work is strongly recommended.  Based on this recommendation a 

finite-element model was developed for the experimental-bridge model that was previously 

tested in the earlier research by Abendroth, et al. (1991).  This chapter briefly describes the 

experimental-bridge model that was used in earlier research work. 

   
2.2. Model description 
 
 Figure 2.1 shows the bridge model that was used in the previous research (Abendroth, et 

al., 1991) to study the characteristic behavioral responses of the bridge when subjected to a load 

applied at the girder bottom flange.  The loads applied to the model were either horizontal or 

vertical or a combination of vertical and horizontal loads.  The experimental-bridge model 

consisted of three, PC girders that were spaced at 6 ft – 0 in. on center.  Figure 2.2 shows the PC-

girder cross section and its dimensions.  The girders were the Iowa DOT, LXA38 beams.  The 

three girders supported a 4-in. thick, reinforced-concrete deck that was 40 ft – 4 in. long and 18-

ft wide.  The deck had a 3-ft-wide overhang that was measured from the center of each exterior 

girder.  At each end of the bridge model, a 42-in. deep by 18-in. wide, reinforced-concrete 

abutment supported the ends of the PC girders.  The abutments rested on the laboratory floor.   
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a.  Section A-A 

                     

 

b. Plan view 

Figure 2.1.  Experimental bridge 
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Figure 2.2.  PC-girder cross section 

 

The end of each girder was placed on an elastomeric, bridge-bearing pad.  The distance between 

the centerline of the bridge abutments was 38 ft – 4 in.  An 8-in. thick, reinforced-concrete, end 

diaphragm was cast at each end of the PC girders.  Figure 2.3 shows the full-depth, RC, end 

diaphragm.  To provide a structural connection between the end diaphragms and the abutments, 

No.5 reinforcing bars were extended from the abutment into the end diaphragm.  The No.5 

reinforcing bars were also used to provide a monolithic joint between the RC, end diaphragms 

and the bridge deck. 
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            Figure 2.3.  Abutment and end diaphragm 
 
 
2.3.  Intermediate diaphragms 

 The diaphragm types that were used in the bridge model were a reinforced concrete (RC) 

diaphragm, two sizes (deep and shallow) of steel-channel diaphragms, and a steel X-braced 

diaphragm with and without a horizontal strut.  Figures 2.4 through 2.6 show the different diaphragm 

types that were used in the experimental bridge.  Two diaphragm locations were considered in the 

tests: diaphragm located at mid span and diaphragms located at the third points of the bridge.  In 

addition, tests were conducted on the bridge model without any intermediate diaphragms. Abendroth 

et al. (1991), gives the complete details for these three types of intermediate diaphragms and for the 
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Figure 2.4.  Reinforced concrete intermediate diaphragm 

  

 

 

 

 

 

 

 

 

 

 

     Figure 2.5.  Steel channel intermediate diaphragm 
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     Figure 2.6.  Steel X-braced with horizontal strut intermediate diaphragm 

 
2.4.  Loading mechanisms 
 
 In the experimental tests (Abendroth et al., 1991), vertical and horizontal loads were 

applied either separately or simultaneously to the bottom flanges of the PC girders.  The vertical 

loads were applied with a hydraulic cylinder and measured with a load cell.  The vertical loads 

were only applied in the upward direction.  Horizontal loads were applied at various locations on 

the bottom flange of any of the three, PC girders.  A self-resisting, load mechanism was used to 

apply the horizontal loads.  Horizontal loads were applied as a pressure on two, small, vertical 

areas that were located on one side of the bottom flange for a girder to avoid interference with 

the diaphragms when the horizontal load was applied at a diaphragm location.  A more complete 

description of the loading mechanisms is provided in Abendroth et al. (1991) 
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3.  FINITE ELEMENT MODEL OF AN EXPERIMENTAL BRIDGE 

3.1.  Introduction 

 The ANSYS (DeSalvo and Swanson, 1985) finite-element program was selected to 

analyze the work, primarily because of its convenient preprocessing (i.e., for data input), and for 

its post-processing capabilities (i.e., formulated results).  ANSYS is a large-scale, user-oriented, 

general purpose finite-element program for linear and nonlinear systems with analysis 

capabilities including static, dynamics, creep, buckling, heat transfer and fluid flow.  The 

program contains a library of more than 70 different elements.  One of the main advantages of 

ANSYS is the integration of the three phases of finite-element analysis: preprocessing, solution 

and post-processing. 

 Preprocessing routines in ANSYS define the model, boundary conditions, and loadings.  

Displays may be created interactively on a graphics terminal as the data are input to assist the 

model verification.  Post-processing routines may be used to retrieve analysis results in a variety 

of ways.  Plots of the structure’s deformed shape and stress or strain contours can be obtained in 

the post-processing stage. 

 
3.2.  Model description 

 Figure 3.1 shows an overall view and a cross section of the finite-element model that was 

developed for an experimental-bridge model (Abendroth et al., 1991) without intermediate 

diaphragms.  The deck and the PC girders were modeled using solid elements (brick elements) 

with eight nodes (SOLID45 in the ANSYS element library).  This element has three translation 

degrees of freedom at each node.  The end diaphragms and the abutments were modeled using 

shell elements (SHELL63 in ANSYS element library).  Each node of the shell element has six 

degrees of freedom: three translations and three rotations. 
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                  a.  Overall view 

 

 

                b.  Cross section 

  Figure 3.1.  Finite element model of an experimental bridge 
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 The analytical model for the experimental bridge consisted of 4,949 nodes and 2,921 

elements.  The deck was modeled with 1,188 solid elements (SOLID45), which were arranged in 

one layer that contained 36 rows of elements in the longitudinal direction of the bridge (see Fig. 

3.1a) and 33 rows of elements across the width of the bridge (see Fig.3.1b).  The modulus of 

elasticity of the deck was set equal to 3,908 ksi, which corresponds to a concrete-compressive 

strength, f ′c, of about 4700 psi when the bridge was tested in the laboratory.  The girders were 

modeled with 972 solid elements; such that each girder contains 9 elements in a cross section 

(see Fig.3.1b).  Since the concrete haunches between the top flange and the underside of the slab 

for a girder were small in size, they were not included in the model. 

 Each abutment consisted of 162 shell elements (SHELL63) that had a thickness equal 18 

in.  Each end diaphragm contained 172 shell elements.  The thickness of the end diaphragms was 

14 in.  The modulus of elasticity of the abutments and end diaphragms was set equal to 4,084 ksi, 

which corresponds to a f ′c-strength of about 5,100 psi.  

 Each concrete abutment and the end diaphragm were assumed to have common nodes, 

since reinforcing bars were provided for monolithic behavior.  Also, a similar idealization was 

used to model the connections between the bridge deck, bridge girders, and the end diaphragms.  

 
3.3.  Support conditions 

 The two, 18-in. thick, abutments that supported the bridge rested on the floor of the 

laboratory.  Thus, all the nodes on the bottom of the abutment were restrained in the vertical (y-

axis) direction (see Fig.3.2).  In addition, lateral supports were added only at one end of the 

finite-element model, while the other end was modeled as a roller.  As shown in Fig.3.2, the edge 

nodes along each side and at the bottom of the laterally-supported abutment were prevented from 
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                   a.  Side view 

 

                 b.  End view 

   Figure 3.2.  Supports condition of the finite element model of the experimental bridge 
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translation (the displacements Ux,Uy and Uz that are along the x-axis, y-axis, and z-axis, 

respectively, are equal to zero).  The figure also shows that one side of the end diaphragm for 

each abutment was restrained from moving in the x-direction at the location of the self-

restraining, load mechanism that was used to apply the horizontal loads to the experimental 

bridge. 

 
3.4. Intermediate diaphragms 
 
 The effect of using different types of intermediate diaphragms on the overall behavior of 

the bridge model was investigated.  This was accomplished using two analytical steps.  For the 

first analytical step, the bridge model was idealized using a coarse size of elements to model the 

bridge deck, girders, abutments and concrete end diaphragms.  In addition, three-dimensional, 

truss elements were used to model the different types of steel diaphragms.  This step included 

two types of models.  The first models were the preliminary models, and the second models were 

the refined models.  For the refined models, some modifications were added to the modeling of 

the diaphragms.  In the second analytical step, the sub-modeling option that is available in the 

ANSYS (DeSalvo and Swanson, 1985) was used in the vicinity of the diaphragms.  At these 

locations, smaller-size elements and a detailed idealization of each diaphragm and its connection 

with the bridge girders were used to improve the accuracy of the predicted strains and 

displacements for the bridge girders.  The input data for displacements at the boundaries of these 

sub-models were obtained from the analysis conducted in the first analytical step.  More details 

regarding these analytical procedures is given in the following sections.  
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3.4.1.  Preliminary models 

3.4.1.1.  Reinforced concrete intermediate diaphragm.   

 The analytical model for the mid-span, RC diaphragm was developed using shell 

elements (SHELL63).  Figure 3.3 shows a cross-sectional view of the analytical bridge model 

with the 6-in. thick, RC diaphragms.  Each diaphragm consisted of 50 shell elements. The 

coordinates of the nodes located at the edges of the RC diaphragms were created to match the 

coordinates of the corresponding nodes for the PC girders and deck of the bridge.  This matching 

of nodes was necessary for creating a bond between the RC diaphragms and the bridge.  

According to the experimental research (Abendroth et al., 1991), the RC diaphragms and the 

bridge deck had the same strength. Their modulus of elasticity was set equal to 3900 ksi. 

  
 
Figure 3.3.  Reinforced concrete diaphragm for the preliminary finite element model 
 
 
 Since the RC diaphragms were cast after the bridge deck already existed, the diaphragms 

were not monolithically connected to the bridge.  However, U-shaped (hair-pin) dowel bars were 

placed through the access holes in the deck that were used in casting each diaphragm.  At these 

locations, the RC diaphragms were connected to the bridge deck.  The connection between the 

RC diaphragms and the PC girders were developed by the two, 5/8-in. diameter, post-tensioning 
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tendons that were placed through 3/4-in. diameter, pipe sleeves that were cast into and along the 

mid-thickness of the diaphragms.  Since the post-tensioning force was not noted in the 

experimental tests, an assumption was made that the PC girders and the RC diaphragms were 

fully connected at the location of the two, post-tensioning tendons.  These connections were 

modeled using common nodes between these elements.  The solid circles that are shown in Fig. 

3.3 represent the common nodes in the model for the RC diaphragm.  At all other locations along 

the interface surface between a diaphragm and the bridge, two coinciding rows of nodes were 

used.  Independent nodes along a boundary between the bridge members permitted the RC 

diaphragms and the bridge to displace independently of each other at those locations.   

 Independent displacements between the diaphragms and the bridge were only required 

when the surfaces between a RC diaphragm and a PC girder and between a RC diagram and the 

RC deck moved away from or parallel to each other.  When these surfaces moved towards each 

other, the RC diaphragm and the PC girders and the RC diaphragm and the RC deck will have an 

effect on each other.  To satisfy these displacement conditions at the coinciding nodes, a three-

dimensional, node-to-node, contact element was added to the model at the locations of the 

coinciding nodes.  A description of this contact element and its properties is presented in Section 

3.7.1. 

 
3.4.1.2.  Steel channel intermediate diaphragm.  
  
 Figure 3.4 shows a cross section of the analytical bridge with the steel-channel 

diaphragm.  Each steel channel was modeled by a three-dimensional, truss link (LINK8 in the 

ANSYS element library) that was located at mid-height of the webs for the PC girders.  This 

truss link has three, translation degrees-of-freedom at each end, which allowed the member to 

resist only axial tension or compression.  The use of slotted holes in the outstanding, 6-in. leg for 
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the angle that was connected to the diaphragm web with two, A325, high-strength bolts caused 

forces to be transferred only by friction between PC girder and a steel-channel diaphragm.  The 

experimental results (Abendroth et al. 1991), showed that slippage occurred between the web for 

a steel-channel diaphragm  and  a  connection-angle leg.   This type of slippage was neglected for  

        Figure 3.4.  Steel channel diaphragm for the preliminary finite element model 

 

the analytical of the preliminary model of the channel-shaped diaphragm.  Therefore, a thrust-

only-type connection was assumed between the steel-channel diaphragms and the webs of the PC 

girders.  

 
3.4.1.3.  Steel X-braced with horizontal strut intermediate diaphragm.   

 Figure 3.5 shows the cross section of the analytical bridge model with the X-braced plus 

horizontal strut diaphragm.  Both, the cross brace and the horizontal struts were idealized using 

three-dimensional, truss links (LINK8).  As was mentioned for the steel-channel diaphragm, 

modeling the MC8x20 channels as truss links prevented the transfer of bending moment between 

the PC girders and the steel channels, as well as neglecting the effect of the shape of a steel 

channel on the analytical results.  Although the holes that were drilled in the 3/4-in. thick, gusset 

plate and in the webs of the steel channels were not slotted, slippage between a steel-channel 

web and a gusset plate might occur because of the required clearance between the bolt and the 

LINK8
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standard-sized, drilled hole for this bolt diameter.  Any slippage between these steel parts was 

neglected for this preliminary model.  Therefore, relative displacements were assumed not to 

occur between the PC girders and the steel, X-braced plus horizontal-strut diaphragms.  

 
   Figure 3.5.  Steel X-braced with horizontal strut diaphragm for the preliminary finite      
            element model 
 
 
3.4.2.  Refined models 

 A review of the displacement results for these preliminary models, which are discussed in 

Chapter 4, revealed significant differences between the predicted and measured displacements.  

More accurate finite-element models (the refined models) were developed to account for the 

actual geometric configurations of the two, steel diaphragms and for the connection details 

between the diaphragms and the PC girders.  

  
3.4.2.1.  Reinforced concrete intermediate diaphragm.   

 When the bottom flange of Beam BM2 (see Fig. 3.6) was horizontally loaded, a tension 

force was predicted by the preliminary model at the surface between Beam BM2 and the RC 

diaphragm that was located between Beams BM1 and BM2.  Even though the tightening force of 

the post-tensioning tendons was not recorded in the experimental test (Abendroth et al., 1991), a 

LINK8 
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complete structural connection was assumed between the PC girders and the RC diaphragms in 

the preliminary model at the locations of the post-tensioning tendons.  This connection 

assumption produced a prediction of a smaller horizontal displacement for Beam BM2 compared 

to that which was experimentally measured.  This difference in the displacement was expected to 

be caused by a non-integral connection between the girders and the adjacent diaphragms that 

allowed a gap to open between Beam BM2 and the intermediate diaphragm that was located 

between Beams BM1 and BM2.  

 To allow Beam BM2 to displace more when this beam is horizontally loaded, the 

common nodes on the interface between Beam BM2 and the diaphragm located between Beams 

BM1 and BM2 were replaced by two coinciding nodes.  One set of these nodes was located on 

the web for Beam BM2 and the other set of nodes was located on the adjacent edge of the 

diaphragm.  A three-dimensional, node-to-node, contact element was placed between each of the 

coinciding nodes.  Figure 3.6 shows the refined model with the common nodes shown as solid 

circles.  The refined model was used only when Beam BM2 was horizontally loaded towards the 

left (as viewed in Fig. 3.6).  The preliminary model shown in Fig.3.3 was used when a horizontal 

load was applied towards the left (as viewed in Fig. 3.3) on Beam BM1. 

 
3.4.2.2.  Steel channel intermediate diaphragm.   

 A refined model for the steel-channel, intermediate diaphragm was developed to consider 

the effect of slippage between the web of a steel channel and the 6-in., outstanding leg of the 

angle that was connected to the web of the PC girders and to consider the effect of the 

configuration  for  the steel-channel diaphragm.  As shown in Fig. 3.7,  the finite-element, bridge  
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Figure 3.6.  Reinforced concrete diaphragm for the refined finite element model 
 
 
model was similar to the preliminary model.  Shell elements (SHELL63) were used to model the 

steel-channel diaphragm in the refined model.  The 6-in., outstanding leg of the steel angle that 

connected the steel channel to the PC-girder web was modeled using four, 1/2-in. thick elements.  

The horizontal top and bottom edges of this modeled angle leg were not connected to a PC 

girder.  The vertical edge of this modeled angle leg that corresponded with the heel of an angle 

that was adjacent to the web of a PC girder was connected to the nodes for the web of the girder.  

The angle leg that was attached to the web of a PC girder for the experimental bridge was 

neglected in this analytical model.  The web of a steel channel was modeled using eleven rows of 

elements in the longitudinal direction of the channel and two rows of elements in the depth 

direction of the channel.  The twenty-two shell elements that were used to model the channel 

web had a thickness equal to 0.4 in.  The flanges for a steel channel were modeled using eleven 

rows of shell elements in the longitudinal direction, and one row of element across the width of a 

flange.  The flange thickness was decreased from the actual 0.5-in. thickness to a 0.4-in. 

thickness  to  account  for  an  increase  in  the  modeled depth  for  the channel above that for the  
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a.  Cross section 

 

 

 

                            

 

 

 

 

 

 

 

 

 

b.  Section A-A 

             Figure 3.7.  Steel channel diaphragm for the refined finite element model 
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actual channel.  The modeled channel depth was established so that the nodes for channel would 

match those for a PC girder web. 

 In the area where a steel-channel web and an outstanding, angle leg were attached, 

coinciding nodes and coinciding shell elements were used for the web and the angle leg.  To 

develop a friction resistance between the coinciding elements that was equal to that which is 

provided by fully-tensioned, 1-in. diameter, A325, bolts and to avoid overlapping between the 

elements, contact surfaces with coefficient of friction, µ, equal to 0.33 were used between the 

channel-web elements and the outstanding-leg elements.  Since the force that was used to tighten 

the high-strength bolts was not recorded in the experimental test (Abendroth et al., 1991), an 

initial force of 51 kips was applied as a clamping force for each bolt at each channel-to-angle 

connection.  This force was equal to the minimum, bolt-tension force for a 1-in. diameter, A325 

bolt (AISC, 2002).   

 Finite-element analyses were conducted for different magnitudes of the clamping force 

that was provided by the high-strength bolts to investigate the sensitivity of the predicted strain 

and displacement results to this assumed clamping force. These clamping forces were applied as 

pressures (see Fig. 3.7b) at the inner surface of the channel web and at the outer surface of the 

outstanding leg for the connection angle.  Equal pressures on both surfaces acted towards each 

other and their magnitude was equal to the clamping force that is induced by two, fully-

tensioned, 1-in. diameter, A325 bolts divided by the contact area.  This magnitude for the 

clamping force, which was equal to 32 kips, produced an average, axial force in the steel-channel 

diaphragm that was close to that measured for the experimental model. 
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3.4.2.3.  Steel X-braced with horizontal strut intermediate diaphragm.   

 For the reasons mentioned in the previous section, the refined model shown in Fig. 3.8 

was created for the X-braced, with the horizontal strut, intermediate diaphragm.  The diaphragm 

consisted of three, steel-channel members (two cross braces and one horizontal strut).  Shell 

elements were used in creating the entire diaphragm.  The web of the three, steel channels was 

modeled using eight element rows along the channel length and two element rows for the 

channel depth.   The flanges for the channels were modeled with a single row of eight elements 

along the channel length.  The web thickness was 0.4 in., and the flange thickness was 0.5 in.  

The total depth and flange width for each channel were 8 in. and 3.025 in., respectively.  

  

 Figure 3.8.  Steel X-braced with horizontal strut diaphragm for the refined finite 
                                element model 

 
 The gusset plate that connected the channel webs to the PC girders were modeled using 

fifteen, ¾-in. thick, shell elements.  The top and bottom, horizontal edges of a gusset plate were 

free.  The nodes for the vertical edge of the gusset plate, which was adjacent to a PC girder, were 

common with nodes for a girder.  The modeling approach discussed in the previous section was 

used to develop the connection between the steel-channel web and the gusset plate.  Contact 
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         (SHELL63)

Gusset plate (SHELL63)
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elements that were similar to those used for the steel-channel diaphragm were used in this model.  

Because of the inclination of the X-braced channels the nodes of both the channel web and the 

gusset plate did not coincide with each other.  Therefore, the elements for both pieces did not 

match with each other.  A 32-kip, clamping force was applied as two, equal-in-magnitude and 

opposite-in-direction, concentrated forces that were applied at the two, coinciding nodes between 

a channel web and a gusset plate. 

 
3.5.  Load cases 

3.5.1.  Preliminary models 

      The purpose of developing and studying the preliminary models was to predict the 

behavior of the bridge model under different cases of loading even when some of the 

construction details were neglected in the finite-element model.  To accomplish this goal, 

horizontal and vertical loads were applied to the preliminary bridge models with loads equal to 

that which were used in the experimental tests.  The load locations shown in Fig. 3.9 were 

considered in this study.  Loads were only applied at the mid-span of Beams BM1 and BM2.  

The responses for Beam BM3 were not included in the comparison study. 

 Vertical loads were applied as concentrated loads in an upward direction and at the two 

points shown in Fig. 3.10.  Each concentrated load started at 5 kips and was gradually increased 

to 25 kips.  Horizontal loads were applied as two, equal, concentrated loads toward Beam BM3 

and at the points shown in Fig. 3.10.  The three, diaphragm configuration cases and the no 

diaphragm case were loaded at Points 1 and 2 (see Fig. 3.9) with a horizontal load that started at 

10 kips and increasing to 75 kips (the maximum load for the no diaphragm case was 60 kips).  
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Figure 3.9.  The load locations considered in the analysis 
 
 
 

 
Figure 3.10.  Vertical and horizontal load locations considered in the preliminary and 
  refined finite element models 
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3.5.2.  Refined models 
       
 After the displacements that were predicted by the preliminary model were compared 

with those experimental displacements, the refined models were developed to improve the 

displacement predictions.  Since the intermediate diaphragms had a minor effect on the bridge 

behavior for vertical loads, vertical loads were not applied to the refined models.   

 A maximum, horizontal load of 75 kips was applied for each type of intermediate 

diaphragm.  This load was applied at Point 1 for both types of the steel diaphragms and at Point 2 

for the RC diaphragms (see Fig. 3.9).  The horizontal loads were applied to the analytical models 

using the procedure described in Section 3.5.1. 

 
3.6.  Sub-models 

3.6.1.  Introduction     

 The refined models that were developed for the different diaphragm configurations gave 

approximate results for the strains and stresses in the bridge deck and girders.  The mesh size 

used in modeling of the bridge elements and intermediate diaphragms and the excluded details, 

such as the exact locations of the A325 bolts and the existence of the A307 bolts that connected 

the steel diaphragms, to the PC girders, were among the factors that affected the finite-element 

results.   

 To more accurately predict the stress and strain distributions in the intermediate 

diaphragms and their connections, a finite-element sub-model was developed for each steel-

diaphragm configuration.  A sub-model was not developed for the reinforced-concrete 

diaphragm because predicted strain results for both the preliminary and refined models that are 

shown in Fig.3.3 and Fig.3.6, respectively were in acceptable agreement with the experimentally 
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measured strains in the bridge deck, girders, and intermediate diaphragms.  One of the main 

elements used in creating and developing the sub-models was the surface-to-surface contact 

element that was used to model the connections between the diaphragm elements and the bridge.   

 An available option in ANSYS (DeSalvo and Swanson, 1985) referred to as “sub-

modeling” was used to analyze the portion of the bridge in the vicinity of the intermediate 

diaphragms.  In general, sub-modeling is a tool that allows the analyst to study the behavior of a 

certain part of a structure without modeling the entire model with a fine-mesh size.  In this 

technique, cut boundaries are defined that are far enough away from the area of interest.  

Boundary conditions (displacements) are calculated first from the analysis of a coarse model 

representing the entire structure.  These boundary displacements are then applied as 

displacement conditions to the cut boundary of the sub-model. 

 
3.6.2. Steel channel intermediate diaphragm sub-model   

This sub-model was created to study the strain distribution in the steel-channel, 

intermediate diaphragm and its connections.  To avoid affecting the results at the diaphragm 

location, cut boundaries were taken at a 3-ft distance along the longitudinal direction of the 

bridge, at each side of the diaphragm.  Figure 3.11 shows the sub-model that was developed for 

the steel-channel, intermediate diaphragm.  Solid elements (SOLID45) were used in creating the 

entire sub-model, including the steel-channel diaphragm and its connections.  The same material 

properties that were used for the steel-channel, intermediate-diaphragm, refined model were used 

for this sub-model.   
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 The bridge deck contained 96 elements in a cross section.  These elements were divided 

into two equal layers with 22 element rows along the longitudinal direction for the bridge.  Each 

PC-girder, cross section was modeled using 32 elements.  The steel channel was modeled with 

234 elements.  Three layers of 26 solid elements were used to model the channel web.  Each 

channel flange had 26 element rows along the length of a channel and 3 element rows across the  

 

a. Overall view 

                                 Figure 3.11.  Steel channel diaphragm sub-model 
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b.  Cross section 

 

 

 

 

 

c.  Overall view with no deck 

                                                         Fig. 3.11. (Continued) 
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flange width.  Each of the 16-in. long, steel angles that connected one end of a channel 

diaphragm to a PC girder was modeled using 56 elements.  The outstanding leg for an angle was 

divided to 5 element rows in its short direction and 7 element rows in its long direction.  The 

angle leg that was attached to the PC-girder web was divided to 3 element rows in its short 

direction and 7 element rows in its long direction.  The 3/8-in. thick, steel plate that was attached 

to the outer side of the web for an exterior, PC girder was modeled using 3 element rows in its 

short direction and 7 element rows in its long direction. 

 Separate nodes were used for the PC girders, steel channel, steel angle, and outside steel 

plate that occurred in the area of contact between these bridge elements.  Therefore, common 

nodes were not used for any two, adjacent members.  This type of element modeling allowed for 

sliding and for gaps to open between the finite elements when loads were applied to the bridge 

model.  Two types of contact surfaces were used in this sub-model.  One surface was a sliding-

contact surface, and the other surface was a sticking-contact surface.  The sliding-contact surface 

was created to attach the channel web to the outstanding angle leg.  For a contact surface, one 

surface must be designated as the target and the other surface must be designated as the contact.  

Since the adjacent surfaces of the channel web and the angle leg are steel, the hardness of each 

surface was the same.  Therefore, either the channel web or the angle leg can be designated as 

target.  The coefficient of friction was set equal to 0.33, which applies for a Class A surface 

(unpainted, clean-mill scale, steel surfaces), as defined by AISC (2002). 

 The joint-clamping forces were applied as two equal, 32-kip, but oppositely directed, 

compressive, concentrated forces.  The clamping forces were applied at the exact location of the 

bolts.  The two nodes at the application points for these forces had the same x and y- coordinates 
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but different z-coordinates.  One of the two nodes was on the side of the channel web toward the 

flanges.  The other node was on the surface of the angle leg that was away from the channel.   

 Two sticking contact surfaces were used for the adjacent surfaces between a PC-girder 

web and the 4-in. angle leg and the outside steel plate.  The sticking-contact surfaces prevented 

any relative displacement along the surface of contact between these portions of the bridge.  

Since a concrete girder surface is softer than a steel surface, the target was attributed to the steel 

plates and the contact was attributed to the PC girder.   

 Each of the two, A307 bolts that fastened the steel-angle leg and outside steel plate to a 

PC-girder web was modeled as a beam element.  A beam element has two nodes with six 

degrees-of-freedom at each node.  Three of the degrees-of-freedom are in translation and the 

other three degrees-of-freedom are in rotation.  Each beam element was located at the exact 

location of the bolt in the experimental bridge.  This beam element connected two corresponding 

nodes.  At an exterior girder, one of the nodes was on the outer steel plate and the other node was 

on the angle leg.  At the interior girder, the nodes for this beam element were on the angle leg on 

each side of the girder web.  The nodes for this beam element were located on the two surfaces 

that were not directly attached to the PC girder web. 

 
3.6.3.  Steel X-braced with horizontal strut intermediate diaphragm sub-model  

 Figure 3.12 shows the sub-model that was developed using solid elements (SOLID45) for 

the X-braced, with horizontal-strut diaphragm.  The material properties for this sub-model were 

the same as those for the refined model for this type of diaphragm.  The cut boundaries were 

taken at the same locations as those for the sub-model of the steel-channel diaphragm.  The 

concrete deck for this sub-model consisted of 96 solid elements in a cross section of the bridge 

and 18 element rows along the longitudinal direction of the bridge.  The deck elements were  
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               a.  Overall view 

           b.  Overall view with no deck 
    
     Figure 3.12.  Steel X-braced diaphragm sub-model 
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c.  Cross section 

Figure 3.12.  Continued 
 
 

modeled on two layers through the thickness of the deck.  A PC-girder, cross section contained 

26 elements.  In the longitudinal direction of the bridge model, the girders were divided into 18 

element rows.  Displacements (boundary conditions) that were calculated from the finite-element 

analysis of the steel, X-braced diaphragm for the refined model that is shown in Fig. 3.8 were 

applied at the cut-boundary nodes of the sub-model. 

 The steel-channel cross braces and horizontal strut were modeled using the same number 

of elements.  The channel web had 4 element rows along the channel depth and 14 element rows 

in the longitudinal direction of the channel.  A steel-channel flange was modeled using 3 element 

rows along the flange width and 14 element rows along the flange length.  The 3/4-in. thick, 

gusset plate was modeled using 40 elements.  An element node occurred at each A325-bolt 

location.  An edge plate that fastened a gusset plate to a PC girder was modeled using 3 element 

rows along the plate width and 11 element rows along the plate length.  This edge plate consisted 

of two parts.  The first part was attached to the top flange of a PC girder, and the second part was 

attached to the web and the bottom flange of a PC girder.   

 The method used to model the connections for the X-braced, intermediate diaphragm was 

the same as that used for the connections of the steel-channel, intermediate diaphragm.  

However, for the sub-model of the X-braced diaphragm, each end of a channel was fastened to 

MC8x20 steel channel
         (SOLID45)

Gusset plate
(SOILD45)
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the gusset plate using four, A325 bolts.  A clamping force of 32 kips per bolt was applied as 

described in Section 3.6.2.  

 
3.7. Comparison of analytical and experimental results 
 
 The results obtained from analyzing the experimental-bridge model were compared to the 

laboratory-test results.  These comparisons included the displacements and strains at the bottom 

flange of the PC girders that were induced by the vertical and horizontal loads, which were 

applied separately at Points 1 and 2, as shown in Fig. 3.10.  The following sections briefly 

summarize some of these comparisons, however, for more detailed comparisons, the reader is 

referred to the thesis by Andrawes (2001). 

 
3.7.1. Comparison of displacements 

Figures 3.13 and 3.14 show the relationships between the horizontal load and the 

horizontal displacement at Point 1 for the bridge model without any intermediate diaphragms and 

with a RC, intermediate diaphragm, respectively.  Similar results that are associated with the 

other diaphragm types were presented by Andrawes (2001).  The no diaphragm case presented in 

Fig. 3.13 showed insignificant differences between the results obtained from the analytical and 

experimental models.  On the other hand, the differences between the analytical and the 

experimental results were noticeable for the bridge model with different types of diaphragms 

(see Andrawes, 2001).  For example, when a 75-kip, horizontal load was applied at Point 1, the 

differences between the predicted and measured, horizontal displacement at Point 1 were 11%, 

26%, and 23% for the bridge with RC, steel channel, and X-braced, intermediate diaphragms, 

respectively.  These displacement discrepancies were most likely caused by the presence of 
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concrete cracks in the experimental-bridge deck that were not included in the finite-element 

models. 

 

 
Figure 3.13.  Horizontal load versus horizontal displacement at Point 1 for the  
                      no diaphragm condition.   
  

Figure 3.14.  Horizontal load versus horizontal displacement at Point 1 for the RC 
           diaphragms 
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3.7.2.  Comparison of strains 

 Table 3.1 lists the experimental and analytical strains in the PC girders and in the 

diaphragms for the experimental bridge with reinforced-concrete, intermediate diaphragms.  For 

the first-load case, a 75-kip, horizontal load was applied to the bottom flange of the exterior 

girder at Point 1.  For the second-load case, that same load was applied to the bottom flange of 

the interior girder at Point 2.   

 The first column in the table lists the bridge member, and the second column in the table 

lists the location that was used for the comparison of the experimental and analytical strains.  

The numbers 1, 2, and 3 refer to Beams BM1, BM2, and BM3, respectively.  The letters L and R 

refer to the left side and right side, respectively, of the bottom flange of the girder where the 

strains were measured.  The diaphragm strains that are presented in this table are the average of 

the strains on each side of the diaphragm between the impacted girder and the next girder.  

Negative strains are compressive strains, and positive strains are tensile strains. 

 The results listed in Table 3.1 reveal that some of the predicted, PC-girder strains are 

significantly different from those strains that were recorded during the experimental tests 

(Abendroth et al., 1991).  One explanation for these strain differences can be attributed to the 

presence of concrete cracks in the experimental-bridge deck that were not modeled for the finite- 

element analyses.  Another reason for these strain differences could be related to the differences 

in the method that was used for the application of the horizontal load.  In the experimental work, 

this load was applied as a pressure over a finite area on the outer face of the bottom flange of a 

PC girder.  For the analytical models, this load was applied as a concentrated load at an element 

node.  Similar strain comparisons for the other types of intermediate diaphragms were 

summarized by Andrawes (2001).   
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 Table 3.1.  Experimental strain results for the RC diaphragm case 

     Bridge member      Location            Experimental strains                  F.E.M. strains       
                                            (Micro-strain)      (Micro-strain) 

     Point 1        Point 2    Point 1        Point 2 

   1R   -8.9            3.9     -22.0  11.0 

                                       1L            110.7          21.8      91.0  26.0 

       2R               -59.0         -42.5     -49.0            -38.0 
    PC GIRDER      

    2L                12.1        140.2      18.0           124.0 
       

   3R               -38.9            -90.6     -48.0           -90.0 
       

    3L                 7.8              -7.0       -9.0           -21.0 
     
    DIAPHRAGM          -159.9           3.9   -202.0              2.0  

 
 

The discrepancies between the experimental and analytical results could have resulted 

from several other sources.  One of these additional sources is the idealization of perfect, simple-

support conditions that were used in the finite-element modeling.  Also, any differences in the 

material properties of the experimental-bridge structure and those assumed in the analytical 

solution could have been another reason for the differences between the experimental and 

analytical result.  Even though differences occurred between the predicted and measured bridge 

responses, the calibration study provided the ISU researchers with valuable, finite-element, 

modeling guidelines regarding element type and size, idealization of diaphragm-girder 

connections, and interface modeling for the parts of the intermediate diaphragms.  The ISU 

researchers believe that these types of finite-element models can be utilized to analyze this type 

of a complex-bridge system. 
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4.  FINITE ELEMENT MODELS OF PROTOTYPE PC GIRDER BRIDGES 

4.1.  Introduction  

 The finite-element guidelines that were discussed in Section 3.8 were used to develop and 

analyze PC girders bridges when the bottom flange of one of the PC girders was subjected to a 

lateral-impact force.  Also, the bridge-skew angle was investigated regarding its effect on the 

response of PC-girder bridges to lateral impacts.  For this purpose, two sets of finite-element 

models for a bridge were used in this analysis.  The first set consisted of a straight (non-skew) 

bridge model, and the second set consisted of 30-deg., skewed-bridge models.  All of the 

analyses were conducted for PC-girder bridges with the Iowa Department of Transportation 

(Iowa DOT) reinforced concrete (RC), intermediate diaphragm, as well as with different 

configurations of steel, intermediate diaphragms.   

 
4.2.  Bridges selected for the analyses 

Engineering drawings for two PC girder bridges in the State of Iowa were obtained from 

the Iowa DOT to establish design parameters for two, prototype bridges.  The geometric 

configurations, dimensions and material properties of each of these two representative bridges 

are presented in the following sections. 

 
4.2.1.  Non-skewed bridge 

 Figure 4.1 shows a longitudinal cross section for a PC girder bridge that was constructed 

over US Hwy. 30 in Marshall County, Iowa.  This bridge will be referred to as the Marshall 

County Bridge.  The bridge skewed angle is 1°-19`-17``, which is almost a non-skewed 

alignment.  The bridge has four spans with three, intermediate, frame-type piers and two, integral 

abutments.  Each end span is 35 ft – 9 in. long, and each interior span is 96 ft – 6 in. long.  



  
48

Figure 4.1.  Longitudinal section at centerline of the roadway for the Marshall County Bridge 
                   (adapted from the Iowa DOT-Highway Division design details) 
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Figure 4.2 shows transverse cross sections of the bridge near the abutment, piers, and 

intermediate diaphragms.  An 8-in. thick, RC-bridge deck is supported by five PC girders.  The 

girders are spaced at 6 ft – 9 in. on center.  A 3 ft-1 in. long, slab overhang that is measured from 

the centerline of the exterior girder to the edge of the deck was constructed along each 

longitudinal edge of the bridge.  The total width of the bridge slab is 33 ft-2 in.  The clear width 

of the bridge slab that is measured between the integral guardrails is 30 ft-0 in.  Figure 4.3 

illustrates the configuration and dimensions of the Iowa “Type D” PC girder used in this bridge. 

At each of the integral abutments, a 3-ft wide, RC, end-diaphragm was constructed.  Steel 

bearing plates are located underneath each of the five girders.  A 3/4–in. diameter, coil rod 

passed through the bottom flange of each girder and extends into the end diaphragm.  Bent bars 

extend from the diaphragm into the 8-in thick deck to provide a connection between the end-

diaphragm and the deck.  

The piers that support an end span and an interior span were constructed as expansion 

piers, and the pier that supports the two interior spans was constructed as a fixed pier.  Figure 4.4 

shows diaphragm details at an integral abutment, at an expansion pier, and at a fixed pier.  An 

expansion pier is constructed such that the PC girders and the 26-in. thick, RC, pier diaphragm 

are supported by laminated-neoprene, bearing pads which permit relative displacement in 

longitudinal direction of the bridge between the girders and the pier.  A fixed pier is constructed 

with formed keyways in the top surface of the pier cap beam.  These keyways have 1-in. thick, 

strips of preformed, expansion-joint filler along the bottom, sides and ends of the keyways.  Also 

at the fixed pier, a 1-in. thick, expansion-joint filler is used at all interface surfaces between the 

pier diaphragm  and  the  pier  cap beam.  The PC girders are supported at this pier by 1-in. thick,  
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a. Cross section near abutment and fixed pier 

 

                    b.  Cross section near expansion pier and intermediate diaphragm 

  
 
Figure 4.2.  Cross section of Marshall County Bridge (Adapted from the Iowa DOT- 
           Highway Division design details, File no. 27498, Sheet no. 8) 
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Figure 4.3.  Cross section of an Iowa LXD PC girder 
 

 
bearing pads.  These construction details for a fixed pier minimized the relative displacement in 

the longitudinal direction of the bridge that can occur between the PC girders and the pier.  The 

concrete that was specified for the PC girders and for the rest of the bridge had a 28-day, 

compressive strength of 5,000 psi and 3,500 psi, respectively. 

 
4.2.2. Skewed bridge 

 Figure 4.5 shows a longitudinal cross section for a PC girder bridge that was constructed 

over US Hwy. 518 in Johnson County, Iowa.  This bridge will be referred to as the Johnson 

County Bridge.  The bridge-skew angle is 20°-24`-48``, and has four spans with three, 

intermediate, frame-type piers and two, integral abutments.  The end span is 45 ft – 9 in. long, 

while the interior span is 96 ft – 6 in. long.  The five, PC girders; bridge deck; and the two, 

expansion-type piers; and one, fixed-type pier are similar for the Marshall County Bridge. 
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                                                                a.  Cross section 

 

 

 

 

                                                                    b.  Plan 

           Figure 4.4.  Diaphragms at the abutments and piers (Adapted from the Iowa  
         DOT-Highway Division design details, File no. 27498, Sheet no. 9) 
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Figure 4.5.  Longitudinal section at centerline of the roadway for the Johnson County Bridge  
                    (adapted from Iowa DOT-Highway Division design details, file no. 26197, sheet no. 2) 
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The two, RC, abutment diaphragms in the Johnson County Bridge had the same thickness 

as that for the Marshall County Bridge.  For the Johnson County Bridge, the thickness of the RC, 

pier diaphragm is 32 in.  The same type of connections between the abutment, pier diaphragms, 

bridge deck, and girders that were used in the Marshall County Bridge were also used in the 

Johnson County Bridge.  The same material properties were applied in the finite-element 

analyses of the non-skewed and skewed bridges. 

 
4.3.  Finite-element models of a non-skewed bridge 

 This section describes the finite-element model developed for a non-skewed, PC- girder 

bridge.  The bridge structure was analyzed twice:  (1) by modeling the entire bridge structure and 

(2) by modeling only one of the interior spans.  To decrease the complexity of the finite-element 

models, some slight modifications were made to the original, geometric configurations of the 

prototype bridge. 

 
4.3.1.  Description of the finite-element model 

4.3.1.1.  Four-span finite-element model   

Figure 4.6 shows the transverse cross section of the four-span, finite-element model that 

was developed for a non-skewed, PC- girder bridge.  To simplify building the finite-element 

model, the span lengths for the Marshall County Bridge described in Section 4.2 were slightly 

modified from the actual lengths.  The end and interior span lengths were set equal to 46 ft and 

97 ft, respectively.  The bridge deck and girders were modeled using eight-node solid “brick” 

elements.  A total number of 10,988 solid elements were used in the deck and girders of the 

bridge model.  Complete details of the finite-element modeling of the bridge structure are 

discussed by Andrawes (2001). 
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                           Cross section 

Figure 4.6.  Cross section of the four-span, non-skewed, finite-element bridge model 

 

Based on the geometrical alignment of the Marshall County Bridge and the dimensions of 

the roadway beneath the bridge, the ISU researchers concluded that an over-height vehicle 

passing beneath the bridge could strike only an interior span of the bridge.  

Figure 4.7 shows the cross section of the roadway beneath the bridge.  The roadway 

profile has two, 12-ft wide, traffic lanes; a 10-ft-wide shoulder near the end span of the bridge; 

and a 6-ft-wide shoulder on the other side of the roadway.  The intermediate diaphragms for an 

interior span of the bridge were assumed to be located at the center of the 24-ft-wide roadway 

beneath the bridge.  As shown in the figure, two-load locations were initially considered in the 

analysis.  The first-load location was at the location of the intermediate diaphragm, and the 

second-load location was at a point 16 ft away from the mid-span and towards the fixed pier.  In 

the vicinity of the load, a finer-mesh size was used in the finite-element model for the bridge. 
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Figure 4.7.  Cross section of the roadway passing beneath the bridge 

 

The modulus of elasticity for the bridge deck and girders were calculated as 3370 ksi and 

4030 ksi, respectively.   The density of the concrete for the deck and girders was set equal to 150 

lb/ft3.  Poisson’s ratio for the concrete was set equal to 0.18. 

The abutment-pile caps and abutment wingwalls were not included in the finite-element 

model; however, the abutment-end diaphragms were included in the analytical model.  These 36-

in. thick, end diaphragms were modeled using shell elements and were considered to be 

integrally connected to the bridge.  The concrete material properties for these diaphragms were 

assumed to be the same as those for the concrete in the bridge deck.  

For the purpose of simplifying the finite-element models without appreciably affecting 

the accuracy of predicted bridges responses, the three piers and their pile caps were not included 
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in the finite-element model.  However, the 32-in. thick, pier diaphragms were modeled using 

shell elements, and they were assumed to act integrally with the girder and the deck.    

The boundary conditions of the finite-element models were selected to represent the 

relative restraints of the prototype bridge.  Figure 4.8 shows a schematic sketch of the boundary 

conditions that were used for the finite-element model.  As shown in the figure, the boundary 

conditions were added to the model at the locations of the abutments and piers.  Since the main 

contact between a bridge superstructure and substructure is at the bottom flange for each girder, 

the boundary conditions were added at each of the lower nodes for the bottom flange of each 

girder.  At all the locations where boundary conditions were considered, the bridge was fully 

restrained from displacing in the vertical direction.   

  

 Figure 4.8.  Boundary conditions considered in the analysis of the four-span finite  
 element model 
 
 
Because of the very large restraint provided by the abutments in the lateral direction (horizontal 

direction perpendicular to the bridge length) of a bridge, lateral translation was prevented at the 

bottom nodes of the bottom flange for each girder.  Roller support conditions were assumed in 

the longitudinal direction of the bridge at the expansion piers and the abutments.  The boundary 

conditions at the fixed pier did not permit longitudinal translation of the PC girders at this 
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location.  To account for the in-plane lateral stiffness of the pier structures, linear-spring-type, 

finite elements were included in the analytical model at each pier location.   

Each spring-type element had three, translational degrees-of-freedom, one for each of the 

three global X,Y, and Z-axis directions, and no damping capability.  These elements, which were 

located in a horizontal plane, were connected at one end to a node on the bottom of a PC girder.  

The other end of each element was connected to a fixed node that was fully restrained from 

being displaced in any of the three orthogonal directions.  The linear-spring stiffness for each of 

these elements was equal to a proportionate share of the lateral stiffness of the particular pier 

frame.  The lateral stiffness of each pier frame was based on the flexural stiffness of the fixed-

ended columns with sidesway.  

 
4.3.1.2. Single-span finite-element model   

An elastic analysis of the bridge structure using the four-span, finite-element model with 

static loads required a large amount of computer-file storage and computation time.  If the bridge 

model is revised to incorporate the nonlinear behavior of the contact elements (discussed later in 

Section 4.3.2.1) and impact loading, the required computer-computational time and data-storage 

size became prohibitive for an analytical solution.  To reduce the computational effort, the size 

of the finite-element model was reduced by modeling only the span of a bridge that experiences 

the impact load.  The diaphragms at an expansion pier and at the fixed pier were included in this 

model.  The results obtained from such an analysis must be verified to determine the effect of 

this simplification on the accuracy of the results.  This verification was accomplished by 

comparing the results obtained from an analytical solution that involved the four-span, finite-

element model with another analytical solution that involved the one-span, finite- element model.  

The single-span and the four-span bridge models were analyzed for the same loading conditions, 
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to establish specific strains and displacements.  These results are presented and discussed in 

Chapter 5. 

The finite-element, modeling guidelines that were discussed in Section 3.8 and the 

techniques and boundary conditions discussed in Section 4.3.1.1 were used to develop the single-

span, finite-element model.  For this model, all of the deck and girder nodes located at the two 

ends of the modeled span were restrained from displacing in the vertical direction, and the effect 

of continuity of the bridge in the longitudinal direction was not included in the model.  The 

validity of this last assumption is based on the application of St. Venant principles. 

 
4.3.2.  Intermediate diaphragms 

This section describes different types of intermediate diaphragms that were used in the 

theoretical study.  One concrete diaphragm and two different configurations of steel diaphragms 

were considered in the analysis.  The details are discussed for the three types of intermediate 

diaphragms, as well as for the finite-element models that were developed for the study of each 

diaphragm type. 

 
4.3.2.1. Reinforced concrete intermediate diaphragm   

Figure 4.9 shows the details of the standard, RC, intermediate diaphragm used by the 

Iowa DOT.  The 10-in.-thick diaphragm starts from the underside of the bridge deck and extends 

down to the vertical face of bottom flange for the PC girders.  The intermediate diaphragms can 

be cast either before or when the bridge slab is cast.  Continuity between a diaphragm and the 

bridge deck is developed by using U-shape stirrups that extend from the diaphragm into the deck.  

To connect the bridge girders and the diaphragms, two, 3/4–in. diameter, steel-coil rods are 

inserted in the web of each girder  at  the location of the diaphragm.  The two rods are positioned  
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Figure  4.9. Iowa DOT reinforced concrete diaphragms (adapted from the Iowa DOT standard details) 
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at the same elevation and at a spacing of 4 in. on center.  This spacing provided for a 3-in. 

clearance between each rod and its adjacent diaphragm edge.  The 15-in. long, coil rods extended 

from both sides of the 7-in. thick, girder web. 

For the finite-element model of the prototype, non-skewed, 97-ft long, bridge span,  four, 

RC, intermediate diaphragms were positioned at the mid-span between the five, PC girders.  

Solid elements were used in modeling the diaphragms.  Three layers of elements were positioned 

across the 10-in., diaphragm thickness.  The thickness of each layer was selected so that the two, 

3/4 - in. diameter, steel-coil rods occurred at the vertical faces of the inner layer of elements.  

Therefore, the thickness of the two, outer, element layers was 3 in., while that for the interior, 

element layer was 4 in.  The concrete material properties for the diaphragms were the same as 

those for the deck.   

Since monolithic concrete construction does not exist between the RC diaphragms and 

the PC bridge girders, common element nodes were not used at the boundaries between the 

diaphragms and the girders.  Two set of nodes were used at these member surfaces.  The first set 

of nodes was for a bridge girder and the second set of nodes was for the RC diaphragm.  This 

modeling technique permits a separation to occur between the girders and the diaphragms.  An 

identical modeling approach was applied at the interface between the deck and the diaphragms, 

even though these members are connected by the U-stirrups.  To prevent the nodes at the 

interface between the diaphragms and the girders and between the diaphragms and the bridge 

deck from overlapping, sliding surface-to-surface contact elements were inserted along the 

common boundaries of these bridge components.  Since a diaphragm has more axial stiffness 

than the transverse-bending stiffness of the PC girders, a diaphragm element was selected as the 
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target element, while a girder element was selected as the contact element.  The coefficient of 

friction between these concrete-bridge elements was set equal to 0.6. 

The steel-coil rods that provided a direct connection between the diaphragms and the 

girders were modeled as three-dimensional, truss links.  Figure 4.10 shows that the coil rods 

passed through a girder web without being connected to any of the nodes for the web.  Each node 

of a link element was connected to a node on the edge of the diaphragm in contact with the side 

of a girder.  This modeling technique allowed a pulling force to be transferred from the pulled 

diaphragm on one side of a girder to the diaphragms on the other side of the girder through the 

coil rod without a direct connection to the girder that was located between the two diaphragms 

(see Fig. 4.10a).  This behavior was based on the fact that a contact surface does not transfer 

tension across two surfaces which are in contact.  

A similar modeling technique, shown in Fig. 4.10b, was used to idealize the connection 

between an exterior girder and its adjacent diaphragm.  To model this connection, a steel plate 

that was not present in the prototype bridge needed to be attached to the exterior side of an 

exterior girder at the location where the coil rods were inserted through the girder’s web.  As 

shown in Fig. 4.10b, the plate, which was modeled by six, three-dimensional, solid elements, 

was positioned so that two, interior nodes for the plate match the two, corresponding nodes on 

the diaphragm edge that was in contact with the girder.  The dimensions for these plates were 10-

in. wide by 8.125-in. high by 1-in. thick.  To prevent the plate nodes from overlapping the girder 

nodes, a contact surface was used at the common boundary between these parts.  The contact 

surface was a sticking surface to prevent a change in the location of the coil rods when the bridge 

was loaded.   One  end  of  a  coil-rod  member  was  attached  to  the diaphragm edge that was in  

   



 

 63

                               

a.  Interior girder connection 

 
                

b.  Exterior girder connection 
 

 Figure 4.10.  Connection between the RC diaphragms and the PC girders 
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contact with the exterior girder, and the other end of a coil rod was attached to the steel plate 

surface that was in contact with the girder. 

 
4.3.2.2.  Steel X-braced with horizontal strut intermediate diaphragm   

Figure 4.11 shows the geometric configuration of the steel, X-braced with horizontal 

strut, diaphragm currently used by the Iowa DOT, and how it is attached to the PC bridge 

girders.  As shown in the figure, the diaphragm consists of two, angle-shaped, cross braces and a 

horizontal strut that has its bottom flange almost flush with the bottom of the girders.  Each 

member of the X-brace is an L 6 x 4 x 5/16.  The horizontal strut is a built-up-shape member that 

is formed by bolting together a WT6 x 17.5 and a W14 x 34 along their lengths.  Two rows of ¾-

in. diameter, high-strength bolts that are spaced at 6-in. on center connect the flange of the WT 

shape and the top flange of the W-shape.  

As shown in Fig. 4.11, the X-brace and the horizontal strut are fastened to the PC girders 

using a bent-steel plate, which is formed into a 9 in. by 6 in. by ½ in. angle shape.  The bent plate 

has a length of 2 ft – 5 in., and it is attached to the web of the girders.  The 6-in. wide, angle leg 

of a cross-brace member is connected to the 9-in.-wide leg of the bent plate with four, 3/4–in. 

diameter, high-strength bolts.  As shown in the figure the only connection between the horizontal 

strut and the bent plate is through the web of the WT-shape at the ends of the members.  These 

end connections are made with four, 3/4–in., diameter, high-strength bolts.  The bent plate is 

fastened to the web of a PC girder with three, 3/4–in. diameter, high-strength bolts that are 

positioned along the height of the 7-in. thick, girder web.  For an interior girder, these bolts 

connected together the 6-in. legs of the bent plates on each side of the girder web.  For an 

exterior girder, these bolts connect together a 3/8-in. thick by 6-in. wide by 2 ft – 5 in. long, steel  
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Figure  4.11.  Iowa DOT X-Braced with horizontal strut diaphragm (adapted from the Iowa DOT standards) 
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plate on the exterior side of the girder web and the bent plate on the interior side of the girder 

web.  To provide a bearing surface between the ends of the W-shaped, horizontal strut and the 

bottom flange of a girder, a shim plate is bolted with two, ¾-in.-diameter bolts to a 3/8-in. thick, 

steel-end plate, which is welded at each end of the W-shape.  As noticed from Fig. 4.11, only a 

portion of the shim plate was in contact with the girder bottom flange.  

All of the steel plates were modeled using shell elements, and the bolts were modeled 

using three-dimensional, truss elements.  These bolts were connected only to the steel plates on 

each side of a girder web.  This idealization for the bolts provided the only load-transfer 

mechanism when tensile forces are induced between the intermediate diaphragms.  To prevent an 

overlap of the nodes for the steel plates and those for the girder web, surface-to-surface, contact 

elements were used on the surfaces between the plates and the girder web.  To prevent 

movement of the high-strength bolts in a vertical plane, a sticky-surface characteristic was 

specified for these contact elements.  Since the contact surfaces separated two different 

materials, the harder surface, which for this application is the steel plate, was modeled as the 

target surface, and the softer surface, which for this application is the RC girder, was modeled as 

the contact surface.    

Figure 4.12 shows a sketch for the model developed for each cross-brace member of an 

intermediate diaphragm.  Three-dimensional, beam elements rather than link-type elements were 

used to model these members.   Beam elements allow the joint between a brace and a bent plate 

to be modeled as a semi-rigid joint.  Nodes c and d, which are shown in Fig. 4.12, were used at 

the end of each cross-brace member.  The 3-in. distance between the two nodes was the spacing 

between the high-strength bolts.  Since a cross-brace member was an L 6 x 4 x 5/16, a 1.17-in. 
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eccentricity existed between the centerline of a bracing member and outstanding leg of a bent 

plate.   

 

 

        Figure 4.12.  Finite element model of a cross bracing member 
                                         (View looking along the member length) 
 
 

To allow for a frictional force to develop between a diagonal member and a bent plate, 

common nodes were not used for these two parts.  Nodes a and b, which are shown in Fig. 4.12, 

were on the surface of a bent plate, and they were in alignment with the Nodes c and d at the end 

of a bracing member.  Nodes a and c and Nodes b and d were connected by a short, rigid-beam 

element.  Node-to-node, contact elements were used to connect these rigid elements to the bent 

plate.  This type of a contact element has only three, translation, degrees-of-freedom; therefore, 

bending moments can not be transferred through the element.  To transfer any in- plane or out-

BEAM4

Bent plate

Clamping
forceCONTAC52

Rigid link

a

bc

d

3 in.



 

 68

of-plane bending moments, the two-paired nodes (Nodes a and c, and Nodes b and d) will permit 

the development of a force couple. 

The contact elements in this connection permits sliding and separation between a cross-

brace member and its supporting bent plate.  The formation of a gap between these two parts was 

restrained by the application of two, 56-kip, clamping forces at each of these connections.  The 

total magnitude of the two clamping forces was set equal to the minimum bolt-tension that 

develops in four, ¾-in. diameter, A325, high-strength bolts.  The resistive sliding force for a 

contact element was based on the clamping forces and a coefficient of friction equal to 0.33 for 

steel-on-steel bearing with a clean, mill-scale, surface condition. 

As previously mentioned in the description of the diaphragm, geometrical configurations, 

an end plate was welded at each end of the W-shape that formed part of the horizontal strut.  A 

shim plate was connected to an end plate using two, 3/4-in., diameter bolts.  In the finite-element 

model, the shim plate and the end plate were modeled as one plate with a 3/8-in. thickness.  

Since this end plate will be effective only when a compressive force exists between the 

horizontal strut and the adjacent, bottom flange of a girder, sliding-surface-to-surface, contact 

elements were used to model the common surface between the end plate and the girder flange.  

These contact-surface elements prevent overlapping of the adjacent surfaces, and they allowed 

an end plate to separate from a girder flange when a horizontal strut is pulled away from that 

flange. 

For the horizontal strut, sliding, surface-to-surface, contact elements were used to model 

the contact area between the bent plate and the web of the WT-shape.  These elements allowed 

relative horizontal and vertical slippage to occur between the horizontal strut and its supporting 

bent plate.  Clamping forces that are induced by the fully-tensioned, high-strength bolts at these 
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connections was modeled using the same techniques that were used for the cross-brace member 

for an intermediate diaphragm.  A coefficient of friction equal to 0.33 was used for a clean-mill-

scale, steel-surface condition.  

 
4.3.2.3.  Steel K-braced with horizontal strut intermediate diaphragm  

The third type of intermediate diaphragm considered in this work has a steel, K-brace 

with a horizontal strut, as shown in Fig. 4.13.  The diaphragm was formed from the same steel 

parts that were used for the steel, X-braced with horizontal strut intermediate diaphragm.  As 

shown in the figure, the only difference between this K-braced diaphragm and the X-braced 

diaphragm involved the diagonal members.  One leg of a diagonal member for the K-brace was 

bolted to the bent plate using four, 3/4-in. diameter, high-strength bolts.  The other end of the 

member was bolted to a gusset plate that was welded to one side of the web for the WT-shape 

portion of the horizontal strut.  The dimensions for the gusset plate are a function of the spacing 

between the PC girders and the girder depth.  For the diaphragm studied, a ½ - in. thick by 7 3/4-

in. wide by 18-in. long, gusset plate was modeled with shell elements.  To provide symmetry for 

the K-brace, the gusset plate was positioned at the mid-length of the horizontal strut.  The 

connection between the end of a diagonal member and the gusset plate was the same as that used 

at the other end of the member.  Essentially, the finite-element idealization that was used for the 

X-braced diaphragm was also used for this diaphragm.   

 
4.3.3.  Load cases 

Lateral-impact loads were applied to the bottom flanges of bridge PC girders to simulate 

an over-height vehicle collision as the vehicle travels underneath a bridge.  There are several 

factors that influence the characteristics of this type of an impact load, e.g., the mass of the truck,  



Figure  4.13.  Iowa DOT K-Braced with horizontal strut diaphragm (adapted from the Iowa DOT standards) 
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the speed of the truck, the geometric configuration and the rigidity of the object that strikes the 

bridge.  However, the mass and speed of the truck are two factors that have a significant effect 

on the magnitudes and duration for the impact load.  The development of mathematical models 

to represent different load-history behavioral relationships for vehicle-impact force was beyond 

the scope of this research. 

 Since the main objective of this research was to conduct a comparative study that 

evaluates the effectiveness of different types of intermediate diaphragms in minimizing structural 

damage to a bridge superstructure when a lateral-impact force was applied to the bottom flange 

of PC bridge girders, a precise forcing function for an impact load did not need to be defined.  

Therefore, a constant-magnitude, impact load was selected to be applied over a short-time period 

for all bridge models. The impact load was applied at one of five locations, as shown in Fig. 

4.14.  Load positions 1 and 2 were at the intermediate-diaphragm location that was at the mid-

span for Beams BM1 or BM5, respectively.  Load positions 3 and 4 were 16-ft away from the 

intermediate-diaphragm location.  As the analytical studies progressed, the researchers decided 

to apply the lateral load at a Load position 5, which was 4 feet away from the intermediate-

diaphragm location.  This fifth-load location was considered to investigate the efficiency of 

diaphragms on reducing the girders damage when the load was applied close to, but not, at the 

intermediate-diaphragm location. 

One scenario that may occur when an over-height vehicle or vehicle load strikes a bridge 

on the bottom flange of girder is as follows: First, the over-height object would impact the first 

exterior girder (Beam BM1).  Then, because the vehicle would not suddenly stop, but continue 

moving, the object being transported could displace downward, as the vehicle-suspension system 

reacts to the impact, which would allow the object to pass beneath Beam BM1.  As the vehicle-
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suspension system rebounds, the object could displace upwards and cause additional impacts of 

the object with some or all of the other bridge girders at either their bottom flange or somewhere  

 

 

 

 

 

 

 

 

 
Figure 4.14.  Load locations 

 
on their web.  Multiple-girder impacts were not included in this study because the reduction in 

the impact-force magnitude resulting from a reduction in the speed of the vehicle after the first 

impact is unknown.  In this work, a single, impact load was applied on Beam BM1 or on Beam 

BM5 (see Fig. 4.14), since these loading conditions will induce the most severe, bridge response.  

When an over-height-object strikes Beam BM1, the bottom flange of this girder will laterally 

displace towards the first-interior girder (Beam BM2).  That movement will induce a 

compression force in the intermediate diaphragm between these two girders.  When an over-

height-object strikes Beam BM5, the bottom flange of this girder will laterally displace away 

from the bridge and induce a tensile force at the interface between that girder and its adjacent 

intermediate diaphragm.   

 The maximum magnitude of an impact load was selected such that the maximum, 

principal-tensile strain that is induced in the impacted girder would not appreciably exceed the 
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modulus of rupture of concrete for the girder.  Two, load magnitudes were selected.  A 120-kip 

load was used when the load that was applied on a PC girder at an intermediate diaphragm 

location.  A 60-kip load was used when the load was applied on a PC girder at a point not at an 

intermediate-diaphragm location.  To establish a reasonable, load-duration time, a literature 

search was conducted, which revealed that the collision times were in the range of 0.05 to 0.15 

sec. (Zaouk et al., 1996; Nalepa, 1990; Jiamaw and James, 1994; and Hohnason and Baughn, 

1992)  A 0.1-sec., load-duration time was selected for all impact loads used in this study.  Figure 

4.15 shows the dynamic-load histories for the two, different, lateral loads.  These loads were 

applied to the analytical model of a bridge span as a pressure loading over an area on the bottom 

flange of a PC girder.  This type of load application was selected over a concentrated load that 

would act at a single node, to minimize high-stress concentration at the location of the load.    

 

        a)  At the diaphragm location      b)  Not at the diaphragm location 

           Figure 4.15.  Force versus time relations used in simulating lateral-impact load 
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4.4.  Finite element model of the skewed bridge 

 A skewed bridge was analyzed to study the effect of the bridge-skew angle on the 

response and behavior of a bridge superstructure with different types of intermediate 

diaphragms.  A 30-deg., skew angle was selected for the prototype bridge.  This section 

describes the finite-element models that were developed for the skewed bridge and the loading 

cases that were considered in this theoretical study.  Figure 4.16 shows a schematic, plan view of 

the skewed bridge and the location of the intermediate diaphragms. 

 

 

 

 

 

                 

 

 

   Figure 4.16.  Arrangement of the intermediate diaphragms in the skewed bridge 

4.4.1. Model description 

Only the impacted, internal span was modeled for the analysis.  The reason for modeling 

only one span rather than the complete-bridge structure was discussed in Section 4.3.1.2.  Except 

for the direction of the horizontal-spring element that modeled the horizontal, in-plane, stiffness 

of a pier, the boundary conditions at the ends of the modeled, interior span for the skewed bridge 

were similar to those used in the analyses of the modeled, interior span for the non-skewed 
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was perpendicular to the longitudinal direction of the bridge.  For the skewed-bridge model, the 

piers were oriented parallel to the road passing underneath the bridge; therefore, a 60-deg. angle 

exists between the longitudinal direction of the piers and the longitudinal direction of the bridge.  

As a result, these horizontal-spring elements that were located at each end of the analytical 

model were aligned parallel to the pier diaphragms.  The guidelines established in modeling the 

intermediate diaphragms for the non-skewed bridge were also used to model the different types 

of intermediate diaphragms for the skewed bridge. 

   
4.4.2. Intermediate diaphragms 

The 30-deg., skew angle and the 6 ft-9 in. girder spacing caused the intermediate 

diaphragms to be offset from each other by 3 ft-11 in., as shown in Fig. 4.17.  The modeling 

techniques discussed in Section 4.3.2.1 and shown in Fig. 4.10 were also applied to model the 

connection of the RC, intermediate diaphragms with the bridge girders for the skewed bridge.  

However, since the intermediate diaphragms were not in alignment for the 30-deg., skewed 

bridge, the method that was used to make the connection between a diaphragm and an exterior 

girder for the non-skewed bridge was used to connect the intermediate diaphragms with all of the 

girders in the skewed bridge.  The offset diaphragms for the skewed bridge also affected the 

connections of the X-braced and K-braced, intermediate diaphragms with the interior, PC 

girders.  The modeling techniques discussed in Sections 4.3.2.2 and 4.3.2.3 for the connection 

between an X-braced and K-braced, respectively, intermediate diaphragm and an exterior girder 

for the non-skewed bridge was applied for all of the connections for the intermediate diaphragm 

to the PC girders in the skewed bridge. 

 

  



 

 76

              

 

 

 

 

 

 

        Figure 4.17.  Load locations of the skewed bridge model 

4.4.3. Load cases 

The loads that were applied to the skewed-bridge model were static loads rather than 

dynamic loads.  The decision of conducting a static-load analysis instead of a dynamic-load 

analysis for the skewed bridge was taken after evaluating a dynamic-load factor (DLF) for each 

of the intermediate-diaphragm studies for the non-skewed-bridge models.  The DLF is a ratio of 

the response magnitudes for a given parameter, such as the maximum, principal-tension strain in 

a girder that is evaluated for dynamic and static loads.  As expected, the principal strains and 

deflections for dynamic loading were higher than those for static loading.  The range in the DLF 

for the maximum, principal-tensile strains in the impacted, PC girder was between 1.15 and 1.20.  

Essentially, the value for the DLF was almost the same for all of the intermediate-diaphragm 

types that were investigated.  The consistency in the magnitude of the DLF for the different 

intermediate-diaphragm types was assumed to be applicable for a skewed bridge. 

The lateral-load locations for the skewed-bridge model are shown in Fig. 4.17.  The load 

was applied to the bottom flange of either Beam BM1 or Beam BM5 and in a direction that was 

parallel to the direction of the roadway passing underneath the bridge.  For the 30-deg.-skewed-
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bridge model, the line-of-action for the load was orientated at a 60-deg. angle, which was 

measured from the longitudinal axis of the bridge.  The load was resolved into components that 

were perpendicular and parallel to the longitudinal axis of the bridge.  The load was applied as a 

pressure with the same magnitudes as that which were used for the non-skewed, bridge models. 
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5.  ANALYSIS RESULTS 

5.1.  Introduction  

   In this chapter the predicted, principal-tension strains and horizontal displacements that 

were induced by the lateral-impact loads are presented for the non-skewed-bridge and skewed-

bridge, finite-element models.  Since this research focused on minimizing potential damage to 

PC girders when a bridge is hit by an over-height vehicle or vehicle load, the ISU researchers 

concentrated the analysis on the response of the PC girders to the lateral-impact loads.  The 

results of the four-span and one-span, finite-element models described in Chapter 4, as well as 

the results for the three, diaphragm types are summarized in separate sections of this chapter.  In 

addition, comparisons are made between the different types of intermediate diaphragms for their 

effect on the structural behavior of the PC girders.   

 
5.2.  Four-span and one-span finite element models 

  In this study, the 120-kip, lateral-impact load with duration time of 0.1 sec. was applied 

at the mid-span of Beam BM1.  The principal-tensile strain at the top fibers of the web for the 

impacted girder of the four-span model and the one-span model are presented in Fig. 5.1.  This 

web location is where the highest, principal-tensile strains were induced in Beam BM1.  The 

figure shows similar behavior over time for the two, finite-element models with about a 15-

percent, maximum difference in the strain magnitudes.   
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Figure 5.1.  Maximum principal-tensile strain versus time for the four-span and one- 
         span models without diaphragms (load and strains at the mid-span of 
         Beam BM1) 
 

The horizontal displacement results obtained from the analysis of the two different 

models are presented in Fig. 5.2.  These displacements were calculated at the bottom flange of 

the impacted girder and at the location of the lateral load.  Figure 5.2 illustrates the close 

agreement in the displacements that were predicted by the four-span and one-span finite-element 

models.  Because of the similarity in the strain and displacement results that are presented in 

Figs. 5.1 and 5.2, the ISU researchers decided to conduct the rest of the research utilizing one-

span, finite-element models. 
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Figure 5.2.  Horizontal displacement versus time for the four-span and one-span  
 models (load and displacement at the mid-span of Beam BM1) 
 

5.3.  Non-skewed bridge model 

 This section presents the maximum, principal-tensile strains and horizontal displacements 

for the PC girders of the non-skewed, bridge models for each type of intermediate diaphragm.  

The lateral load that was applied for the analyses and the applied-load locations were presented 

in Section 4.4.3. Section 5.3.4 presents the maximum, principal-tensile strains in an impacted, 

exterior girder for a non-skewed bridge when the lateral-impact load was applied at 4 ft away 

from the mid-span.  

 
5.3.1  Strains 

 To qualitatively evaluate the amount of potential damage that might occur in a PC girder 

after a bridge superstructure is hit by an over-height-vehicle load, the ISU researchers decided to 
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use the induced, principal-tensile strains in the girder as a measurement for potential-damage 

assessment.  Strains rather than stresses give a more accurate representation of structural 

response.  Except for localized damage at the point of impact, large tensile strains rather than 

large compressive strains will provide an indication as to where most of the damage will occur in 

a girder.  All of the principal-tensile strains that are presented in this chapter are the maximum 

values that occurred in each girder.  The maximum, principal-tensile strain occurred at the same 

location for the three types of intermediate diaphragms that were investigated in this research 

when the impact load was at mid-span, which was the location of the intermediate diaphragms.  

The maximum strain was in the bottom flange of the impacted girder at the mid-span cross 

section.  This maximum-strain location was the same for the girders that were not directly 

impacted, when the load was applied at 16 ft away from the mid-span of the impacted girder.   

 When the lateral load was applied at a location that was not at an intermediate diaphragm, 

the maximum, principal-tensile strains that were induced in the impacted girder occurred at the 

cross section of the girder where the load was applied.  Although the load was applied directly to 

the girder bottom flange, the maximum strains were at the top of the girder web because of the 

flexibility of the web for the girder in the plane of the cross section for the girder.  This 

flexibility was restrained at the mid-span cross section for the girder by the intermediate 

diaphragm that was in contact with the web of this girder.  The absence of this lateral restraint at 

a location away from the intermediate diaphragm allowed the top of the web to experience a high 

bending moment that acted in the plane of the cross section for the girder.  When diaphragms 

were not present in the bridge, the maximum, principal-tensile strains always occurred at the 

cross section where the load was applied and in the top fibers of the girder web. 
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5.3.1.1.  Reinforced concrete intermediate diaphragms 

 Figure 5.3 shows the maximum, principal-tensile strains in the five, PC girders when RC, 

intermediate diaphragms are present and the 120-kip, impact load was located at the mid-span of 

Beam BM1.  The response of the girders was recorded for 0.03 seconds after the load has been 

removed.  The figure shows a significant difference in the strains between the loaded girder 

(Beam BM1) and the other PC girders.  As shown in the figure, the maximum, principal-tensile 

strains that were induced in each girder reached their peak value at sequential times.   

 

 

 

      
 
       
 
 
 

 
 
 
 
 
 
 
Figure 5.3.  Maximum principal-tensile strain versus time for the RC diaphragms 
                    (no load offset on Beam BM1) 
 

 This time-delay effect was expected since a time lapse is necessary for a portion of the 

impact load to be transferred from the impacted girder (Beam BM1) to the next girders in order 

of their position with respect to Beam BM1.  Figure 5.3 shows that the maximum, principal-

tensile strain induced in Beam BM1 was equal to 223 micro-strains and that this strain occurred 

at 0.069 sec. after the initiation of the impact load.  After the load was removed at 0.1 sec., this 
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strain in Beam BM1 initially decreased quite rapidly and then gradually increased again in 

response to the dynamic characteristics for the bridge.  As one would expect, the strains in the 

girders that were closer to the impact location on Beam BM1 were higher than that for those 

girders that were further away from the impacted girder.  But, what was not anticipated by the 

ISU researchers was the significant difference in the maximum, principal-tensile strains between 

Beams BM1 and BM2 when the impact load occurred at the diaphragm location. 

Figure 5.4 shows the distribution of the maximum, principal-tensile strain along a portion 

of the length of the impacted girder at a time of 0.069 sec. after the 120-kip, impact load was 

applied to Beam BM1.  The impact location corresponds with the zero distance on the abscissa 

scale for the graph.  As shown in the figure, only one half of the beam length was considered in 

the study because of the symmetry of the model and loading.   

 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 5.4.  Maximum principal-tensile strain distribution along a portion of Beam BM1 
                    for the RC diaphragms (no load offset on Beam BM1) 
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A maximum, principal-tensile strain of 223 micro-strains was predicted at the mid-span 

for the impacted girder.  This strain rapidly diminished for girder cross sections that were slightly 

removed from the impact location.  At a distance of 10 in. away from the mid-span for the girder, 

this strain was equal to about 50 percent of its maximum value.  The strain continued to 

gradually decrease to about 20 percent of its maximum value at a distance of 40 in. away from 

the mid-span.   

 Figure 5.5 presents the maximum, principal-tensile strains that were predicted for the 

five, PC girders with the RC, intermediate diaphragm, when the 120-kip, impact load was 

applied at the mid-span of Beam BM5.  This load was applied on the inside face of the bottom 

flange for this girder. 

 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5.  Maximum principal-tensile strain versus time for the RC diaphragms 
          (no load offset on Beam BM5) 
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The loaded girder (Beam BM5) experienced the highest strain of 148 micro-strains at 

0.015 sec. after the impact load was applied to this girder.  Again, the strains in the impacted 

girder were significantly higher than the strains in the other girders.  A comparison between the 

maximum-strain for Beam BM5 and that predicted for Beam BM1 (see Fig. 5.3), when the load 

impacted that girder, revealed that the geometrical conditions, which were associated with Fig 

5.3, produced higher strains in the impacted girder than that for the geometrical conditions, 

which were associated with Fig. 5.5.  This difference in the behavior between the two, load cases 

was caused by the geometry of the connection between each of the exterior, PC girders and the 

adjacent intermediate diaphragm.  When Beam BM1 was loaded on the exterior face of the 

bottom flange, the impact load induced a compressive force between this loaded girder and its 

adjacent diaphragm.  A force was transferred between the girder and the diaphragm by bearing 

along a portion of the depth of the diaphragm.  The force in the coil rods that connected these 

members was almost equal to zero.  On the other hand, when the load was applied on the interior 

face of the bottom flange for Beam BM5, the bottom flange for this girder was pulled away from 

the adjacent diaphragm.  Only the coil rods provided a connection between the loaded girder and 

its adjacent diaphragm.  As a result, a large tensile force was induced in the two, coil rods to 

resist the separation of this girder and this diaphragm.  The force in the coil rods induced strains 

in the bottom flange of the loaded girder that were of opposite sense to the strains that were 

induced in the bottom flange of the loaded girder by the applied impact load.  The same type of 

strains were induced when Beam BM1 was the impacted girder and the adjacent diaphragm 

induced a resisting pressure against the inside face of Beam BM1.  Since the location of the coil 

rods were close to the bottom flange for Beam BM5, the strains induced in Beam BM5 by the 

resistance that was provided by the coil rods was higher than the strains that were induced in 
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Beam BM1 by the resistance that was provided by the bearing of the diaphragm that was 

adjacent to Beam BM1.  The net effect of the load-transfer mechanisms that existed when Beam 

BM1 or Beam BM5 were the impacted girder caused smaller, induced, resultant strains in Beam 

BM5, when that beam was the impacted girder, than those strains in Beam BM1, when that beam 

was the impacted girder. 

Figure 5.5 shows that the maximum, principal-tensile strains in the four, non-impacted, 

PC girders (Beams BM1 through BM4) were almost equal to each other.  After about 0.05 sec. 

had elapsed since the load impact began, Beam BM1 started to experience higher, principal-

tensile strains than those strains for the other unloaded beams.  This behavior was induced by the 

load-transfer mechanisms between the girders and the diaphragms.  When Beam BM5 was 

loaded, a tension force was induced in all of the coil rods that connected the diaphragms to the 

girders.  These coil-rod tension forces caused all the intermediate diaphragms to displace towards 

Beam BM5.  This diaphragm movement induced a contact pressure from the diaphragm on the 

side of a PC girder that faced Beam BM1, since the coil rods were not attached to the girders.  

For Beam BM1, there was not a diaphragm on the free side of the girder and only a small plate 

was used at the coil-rod location.  Thus, the force transferred to Beam BM1 through the coil rods 

was a concentrated load rather than a distributed pressure.  Since Beam BM1 was the farthest 

girder from the point of the applied load, the largest time delay occurred for this girder to reach 

its maximum, principal-tensile strain. 

Figure 5.6 shows the distribution of the maximum, principal-tensile strains along a 

portion of the length for Beam BM5 at a time of 0.015 sec. after the 120-kip, impact load was 

applied to this girder.  The largest strain of 148 micro-strains occurred at the mid-span of Beam 

BM5.  Due to the symmetry of the bridge about its mid-span, the distribution of the strains is 



 

 88

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

0 1 0 2 0 3 0 4 0 5 0

D is ta n c e  fr o m  m id -sp a n  ( in .)

m
ic

ro
-s

tr
ai

n

B M 5

B M 1

only shown for one half of the beam length.  The figure shows that the strains gradually 

decreased for the girder cross sections that were farther away from the point of impact until the 

strain was equal to about 15 percent of its maximum value at a distance of 20 in. from the mid-

span.  The strain distribution shown in Fig. 5.6 is quite similar to that shown in Fig. 5.4.      

 

 

 
 
 
 
 
Figure 5.6.  Maximum principal-tensile strain distribution along a portion of Beam BM5 
                    for the RC diaphragms (no load offset on Beam BM5) 

 

The slight difference in the distribution of the principal-tensile strains that are shown in 

Figs. 5.4 and 5.6 was attributed to the difference in the load-transfer mechanism that was 

associated with an impact load being applied to Beams BM1 or BM5. 

 Figure 5.7 presents the maximum, principal-tensile strains that were induced in the five, 

PC girders with the RC, intermediate diaphragms, when the 60-kip, impact load was applied at 

16 ft away from the mid-span of Beam BM1.  As shown in the figure, Beam BM1 was the girder 
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which was most affected by the applied load.  This load-resistance behavior amongst the five 

girders was expected, since the impact load was applied away from the diaphragm location.  A 

time delay was observed in the response of the unloaded girders because of the time required for 

a portion of the impact load to be transferred from the impacted girder through the diaphragms to 

the rest of the girders.  As noticed from the figure, the strain response for the five girders is 

characterized by more vibration amplitude and even larger magnitudes than those shown in Fig. 

5.3, when the 120-kip, impact load was applied at the mid-span of Beam BM1, which matched 

the location for a diaphragm.  These behavioral differences were expected for the different load 

point with respect to the diaphragm location.  For the geometric conditions that were associated 

with Fig. 5.7, the maximum, principal-tensile strain in Beam BM1 was 323 micro-strains, and it 

was predicted to occur 0.02 sec. after applying the 60-kip, impact load.   

    
Figure 5.7.  Maximum principal-tensile strain versus time for the RC diaphragms  
                    (16-ft load offset on Beam BM1) 
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For each of the four, non-impacted girders, the maximum, principal-tensile strain was in 

the bottom flange for each girder at the intermediate-diaphragm location and not at the point of 

application of the impact load.  With regards to the girders that were not directly impacted, the 

first-interior girder (Beam BM2) was the most affected unloaded girder.  The maximum strain 

induced in Beam BM2 was about 20 percent of that induced in the impacted girder.  The rest of 

the unloaded girders (Beams BM3, BM4, and BM5) almost experienced the same behavior.  The 

maximum, principal-tensile strains in these girders were significantly smaller than that in Beam 

BM2. 

 Figure 5.8 shows the maximum, principal-tensile strains in the five, PC girders with RC, 

intermediate diaphragm, when the 60-kip, impact-load was applied at 16 ft away from the mid-

span of Beam BM5.  The behavior shown in the figure is similar to that shown in Fig. 5.7, when 

the 60-kip, impact load  was  applied to Beam BM1.  After about  0.02 sec. of  applying the load, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8.  Maximum principal-tensile strain versus time for the RC diaphragms 
                    (16-ft load offset on Beam BM5)  
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the principal-tensile strain in Beam BM5 reached a maximum value of 325 micro-strains.  The 

maximum, principal-tensile strains in each of the other girders were almost the same, and these 

strains were relatively small compared to those strains for Beam BM5. 

 
5.3.1.2. Steel X-braced with horizontal strut intermediate diaphragms   

Figure 5.9 shows the maximum, principal-tensile strains in the five, PC girders with the 

steel X-braced and horizontal strut, intermediate diaphragm.  The 120-kip, impact load was 

applied at the mid-span of Beam BM1.  As shown in the figure, Beam BM1 experienced the 

largest, principal-tensile strain. This strain was equal to 341 micro-strains, and it was induced 

0.09 sec. after applying the load.  The principal-tensile strains in Beam BM1 significantly 

decreased after the removal of the load at a time of 0.10 sec.  The largest principal-tensile strain 

that was induced in Beams BM2 and BM3 was 159 and 84 micro-strains, respectively.  These 

strains in Beams BM4 and BM5 were relatively small, which indicated that most of the lateral 

load was resisted by the first three girders, when the load was applied at the diaphragm location.   

Figure 5.10 presents the distribution of the maximum, principal-tensile-strains along a 

portion of the length for Beam BM1 at a time of 0.9 sec. after the 120-kip, impact load was 

applied to this girder.  Because of the symmetry of the model with the load applied at mid-span, 

only the distribution of these strains along a portion of one-half of the length of Beam BM1 is 

shown.  The maximum strain of 341 micro-strains was induced in the bottom flange of this 

girder and at the mid-span of the girder.  The strain gradually decreased in a cross section of a 

girder, as the distance increased between that cross section and the mid-span.  At 40 in. from the 

mid-span, the maximum, principal-tensile strain was equal to about 38 percent of its maximum 

value at the mid-span. 
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 Figure 5.9.  Maximum principal-tensile strain versus time for the X-braced  
                     diaphragms (no load offset on Beam BM1) 

   

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 5.10.  Maximum principal-tensile strain distribution along a portion of Beam BM1  
           for the X-braced diaphragms (no load offset on Beam BM1) 
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Figure 5.11 shows the maximum, principal-tensile strains in the five, PC girders with the 

X-braced and horizontal strut, intermediate diaphragm, when the 120-kip, impact load was 

applied at the mid-span of Beam BM5.  This beam experienced slightly higher strains than the 

adjacent girder (Beam BM4).  The maximum, principal-tensile strains in Beam BM5 were 264 

micro-strains at a time of 0.03 sec., while that strain in Beam BM4 was 224 micro-strains at a 

time of 0.04 sec.  The 15-percent difference between the maximum strains for Beams BM5 and 

BM4 was considered to be small compared to the 74-percent difference between those strains in 

those same girders (see Fig. 5.5) and for the same loading conditions when the RC, intermediate 

diaphragms were used.  The ISU researchers attributed this difference in the strain magnitudes 

for these girders that have the RC, intermediate diaphragms or the steel, X-braced, intermediate 

diaphragms to be caused by the geometrical configuration for each diaphragm type and the 

connection detail between each diaphragm type and the PC girders.  Since the maximum strains 

were induced at the bottom flange of each girder, the X-braced diaphragm was more likely to 

produce more strain in the bottom flange of the girder adjacent to the impacted girder because of 

the existence of the horizontal strut.  As discussed in Section 4.3.2.2, this horizontal strut was in 

contact with the bottom flanges of adjacent girders, since steel-shim plates were used between 

the girders and the diaphragms.  This connection allowed the horizontal strut to separate from the 

bottom flange of a PC girder, when the diaphragm was pulled away from the flange, or to press 

on the flange, when the diaphragm was pushed towards the flange.  When the impact load was 

applied on the inner face of the bottom flange and at the mid-span of Beam BM5, a gap formed 

at each end of the horizontal strut that was located between Beams BM4 and BM5.  These gaps 

were between the shim plates and the bottom flanges of the adjacent girders.  Therefore, this 

horizontal strut did not transfer any force to the bottom flange of BM4.     Horizontal forces were  
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Figure 5.11.  Maximum principal-strain versus time for the X-braced diaphragms 
            (no load offset on Beam BM5) 
 

transferred from Beam BM5 to Beam BM4 by the three bolts that connected this diaphragm to 

the web of Beam BM4, as shown in Fig. 4.11.  The induced, tension forces in these bolts pulled 

the diaphragm that was located between Beams BM4 and BM3 towards Beam BM4 and thereby 

induced a contact pressure to develop between the horizontal strut for this second diaphragm and 

the bottom flange of Beam BM4.  This contact pressure induced additional strains in the bottom 

flange of Beam B4.  This type of behavior did not occur to the same degree with the RC, 

intermediate diaphragms because these diaphragms did not extend down to the bottom of the PC 

girders, as shown in Fig. 4.9. 

 Figure 5.12 presents the distribution of the maximum, principal-tensile strain along a 

portion of the length for Beam BM5 at a time of 0.03 sec. after the 120-kip impact load was 
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applied to this girder.  Again, because of the symmetry of the bridge and with the load applied at 

the mid-span, only the strain distribution along one half of a portion of the girder length is shown 

in the figure.  The maximum, principal-tensile strain for Beam BM5 was 264 micro-strains.  

Figure 5.12 shows that this maximum strain occurred near the intermediate diaphragm location, 

but not directly at the mid-span for the beam because of the slightly unsymmetrical connection 

between the X-braced diaphragm and the bridge girder.  As one would expect, the strain 

gradually decreased in Beam BM5, as the distance increased between the girder cross section 

where the strain is evaluated and the diaphragm location.    

 The maximum, principal-tensile strains in the five, PC girders with the X-braced and 

horizontal strut, intermediate diaphragm, when the 60-kip, impact load was applied at 16 ft away 

from the mid-span of Beam BM1, are shown in Fig. 5.13.  As shown in the figure, Beam BM1 

resisted most of the impact load and the unloaded girders experienced minimal strains.  The 

maximum, principal-tensile strain in Beam BM1 was 327 micro-strains at a time of 0.02 sec., 

while the average of the maximum, principal-tensile strain in the other four girders was about 40 

micro-strains.  

Figure 5.14 shows the maximum, principal-tensile strains in the five, PC girders with the 

X-braced and horizontal strut, intermediate diaphragm, when the 60-kip, impact load was applied 

at 16 ft away from the mid-span of Beam BM5.  The strain versus time behavior for each of the 

girders is essentially identical to those behaviors that are shown in Fig. 5.7 for the RC, 

intermediate diaphragms.  Beam BM5 resisted the majority of the impact load.  The maximum, 

principal-tensile strains in Beam BM5 were about 330 micro-strains at a time of 0.02 sec after 

the load was applied to Beam BM5.   For the other girders, the average, maximum, principal-

tensile strain was about 45 micro-strains. 



 

 96

 
Figure 5.12.  Maximum principal-tensile strain distribution along a portion of BM5 

          for the X-braced diaphragms (no load offset on Beam BM5) 

Figure 5.13.  Maximum principal-tensile strain versus time for the X-braced diaphragms 
           (16-ft offset load on Beam BM1)  
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Figure 5.14.  Maximum principal-tensile strain versus time for the X-braced diaphragms  
           (16-ft offset load on Beam BM1) 

 

5.3.1.3. Steel K-braced with horizontal strut intermediate diaphragms  

Figure 5.15 shows the maximum, principal-tensile strains of the five, PC girders with the 

K-braced and horizontal strut, intermediate diaphragm, when the 120-kip impact load was 

applied at the mid-span of BM1.  A comparison of this figure with Fig. 5.9, where the X-braced 

diaphragm was studied for the same loading, revealed very similar behavior of the bridge with 

either type of steel diaphragm.  Despite this agreement in the overall-strain behavior, a slight 

difference occurred in the maximum magnitude of the principal-tensile strains.  A more detailed 

comparison of the maximum, principal-tensile strain for the two types of structural-steel 

diaphragms and for the RC diaphragm is discussed in Section 5.3.3.  The highest strain that was 

induced in Beams BM1, BM2, and BM3 was 317 micro-strains at a time of 0.09 sec., 111 micro-

strains at a time of 0.11 sec., and 63 micro-strains at a time of 0.05 sec., respectively.  
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Figure 5.15.  Maximum principal-tensile strain versus time for the K-braced 
                      diaphragms (no load offset on Beam BM1) 

 
 

Figure 5.16 shows the distribution of the maximum, principal-tensile strain along a 

portion of the length for Beam BM1 with the K-braced and horizontal strut, intermediate 

diaphragms at a time of 0.09 sec.  The loading that is associated with this figure was the same as 

that discussed for Fig. 5.15.  The maximum strain was 317 micro-strains, and this strain occurred 

at the mid-span of the girder.  The strains gradually decreased in the girder cross sections that 

were further from the load location.  At a distance of 40 in. from the impact-load location, the 

maximum, principal-tensile strain in this girder was about 37 percent of its maximum value at 

the mid-span of the girder.  This strain distribution was almost identical with that shown in Fig. 

5.10 for the X-braced with horizontal strut diaphragms. 

Figure 5.17 presents the maximum, principal-tensile strains in the five, PC girders with 

the K-braced and horizontal strut, intermediate diaphragms, when the 120-kip, impact load 

applied at the mid-span of Beam BM5.  A comparison of this figure with Fig. 5.11, revealed 

similarities  in  the strain-versus-time behavior for the five girders.   For the K-braced diaphragm, 
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Figure 5.16.  Maximum principal-tensile strain distribution along a portion of BM1 for the  
                       K-braced diaphragms (no load offset on Beam BM1)  
            
 

 
Figure 5.17.  Maximum principal-tensile strain versus time for the K-braced diaphragms 
             (no load offset on Beam BM5) 
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the largest, principal-tensile strain in Beam BM5 was 205 micro-strains, which occurred at 0.025 

sec. after the load was applied to Beam BM5.  Beam BM4, which was also highly affected by the 

impact load, experienced a maximum strain of 194 micro-strains at a time of 0.04 sec.  The 

maximum, principal-tensile strain in Beam BM3 was about 50 percent of that strain in Beam B5. 

Figure 5.18 shows the distribution of the maximum, principal-tensile strains along a 

portion of the length for Beam BM5 for the K-braced and horizontal strut, intermediate 

diaphragm at 0.025 sec. after the impact load was applied to this beam.  This was the time when 

Beam BM5 experienced its largest principal-tensile strain.  The loading that was associated with 

this figure was the same as that for Fig. 5.17.  The overall, strain-versus-time behavior shown in 

this figure is essentially identical with that shown in Fig. 5.12 for the X-braced and horizontal 

strut, diaphragm. Just as for the X-braced diaphragm, the principal-tensile strains were a 

maximum  at  a  location  that was slightly offset from the intermediate diaphragm because of the 

 
Figure 5.18.  Maximum principal-tensile strain distribution along a portion of BM5  
           for the K-braced diaphragms (no load offset on Beam BM5) 
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slight asymmetry of the diaphragm-to-girder connections.  The maximum, principal-tensile strain 

at 40 in. away from the impact load was equal to about 28 percent of its maximum value. 

 When the 60-kip, impact load was applied at 16 ft away from the mid-span of Beams 

BM1 and BM5, respectively, Figs. 5.19 and 5.20 show the maximum, principal-tensile strains for 

the five, PC girders with the K-braced and horizontal strut, intermediate diaphragm.  A 

comparison of each of these figures with the corresponding Figs. 5.13 and 5.14 for the X-braced 

and horizontal strut, intermediate diaphragm revealed that almost identical strain-versus-time 

behavior occurred for the two types of steel diaphragms.  Essentially the same, maximum, 

principal-tensile strains were induced in the impacted girder for both of these steel diaphragms.  

Based on these strain results, the K-braced and X-braced, intermediate diaphragms provided the 

impacted girder with essentially the same degree of impact-damage protection, when the impact 

load was applied at 16 ft away from the diaphragm location. 

 
5.3.2.  Displacements 

 This section presents the predicted, maximum, horizontal displacements of the impacted 

and non-impacted, PC girders that are subjected to different, lateral, impact loads.  These 

displacement results are individually discussed for each type of intermediate diaphragm, and 

comparisons between the displacement results for each type of diaphragm are discussed in 

Section 5.3.3.  For the three types of intermediate diaphragm and for the bridge without 

intermediate diaphragms, the maximum, horizontal displacement always occurred at the bottom 

of each of the five, PC girders.  When the impact load was at the mid-span, the maximum, 

horizontal displacement occurred at the mid-span for each PC girder.  When the impact load was 
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Figure 5.19.  Maximum principal-tensile strain versus time for the K-braced diaphragms  
           (16-ft load offset on Beam BM1) 
 
 

 
Figure 5.20.  Maximum principal-tensile strain versus time for the K-braced diaphragms 
            (16 ft load offset on beam BM5) 
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not applied at the mid-span, diaphragm location, the non-impacted girders had their maximum, 

horizontal displacement at the mid-span, and the impacted girder had its maximum, horizontal 

displacement at the location of the load. 

 Figures 5.21, 5.22 and 5.23 show the horizontal displacements of the five, PC girders 

with the RC, X-braced and horizontal strut, and K-braced and horizontal strut, intermediate 

diaphragms, respectively, with the impact load applied at the mid-span of Beam BM1.  As shown 

in these figures, the horizontal displacement of each girder gradually increased during the 0.10-

sec., time duration of the load.  After the load was removed from the bridge at a time of 0.10 

sec., the horizontal displacement for the impacted girder (Beam BM1) started to gradually 

decrease with time, while the horizontal displacements for the other girders continued to increase 

for a period of time.  For the time period between 0.0 sec. and 0.10 sec., the horizontal 

displacements for Beam BM1 were the largest, and the magnitude of the horizontal 

displacements for the other beams were in consecutive order that depended on the location of 

each beam relative to Beam BM1.   

 As shown in Fig. 5.21, the maximum, horizontal displacement for Beam BM1 was 0.222 

in., while that for Beam BM5 was 0.164 in., when RC, intermediate diaphragms were used in the 

bridge.  The 25-percent difference between these two, girder displacements was relatively small 

due to the relatively large, axial rigidity of the RC diaphragms.  Even though the relative 

horizontal displacements were small, a large difference occurred in the maximum, principal-

tensile strains for these two girders (see Fig. 5.3).  This difference between the strain and 

displacement behavior is because strains are a function of curvature, and they are not a function 

of displacement.  
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Figure 5.21.  Horizontal displacement versus time for the RC diaphragms  
                                  (no load offset on Beam BM1) 

Figure 5.22.  Horizontal displacement versus time for the X-braced diaphragms 
                      (no load offset on Beam BM1) 
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Figure 5.23.  Horizontal displacement versus time for the K-braced diaphragms 
                      (no load offset on Beam BM1) 
             

Figures 5.22 and 5.23 show a very similar displacement-versus-time behavior for the two 

types of steel, intermediate diaphragms.  For the X-braced and horizontal strut, intermediate 

diaphragms and for the K-braced and horizontal strut, intermediate diaphragms, the maximum, 

horizontal displacement for Beam BM1 was 0.272 in. and 0.264 in., respectively.  The relatively 

large difference in the horizontal displacements for the impacted girder and the other girders 

when the steel intermediate diaphragms were used indicates that the axial rigidity of these steel 

diaphragms was not as high as that for the RC diaphragm. 

Figures 5.24, 5.25 and 5.26 present the maximum, horizontal displacements of the five, 

PC girders with the RC, X-braced and horizontal strut, and K-braced and horizontal strut, 

intermediate diaphragms, respectively, when the 120-kip, impact load was applied at the mid-
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span of Beam BM5.  A comparison of these displacement results for each type of diaphragm 

with those corresponding results that are shown in Figs. 5.21, 5.22, and 5.23 revealed essential 

identical displacement-versus-time behavior for each type of diaphragm.  As shown in Figs. 

5.24, 5.25 and 5.26, the largest, horizontal displacements for Beam BM5, when the RC, X-

braced and K-braced, intermediate diaphragm were used in the bridge were 0.223, 0.270 and 

0.265 in., respectively.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.24.  Horizontal displacement versus time for the RC diaphragms 
                                  (no load offset on Beam BM5) 
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 Figure 5.25.  Horizontal displacement versus time for the X-braced diaphragms  
                       (no load offset on Beam BM5) 

 

 
Figure 5.26.  Horizontal displacement versus time for the K-braced diaphragms 
                      (no load offset on Beam BM5)   

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 0 .0 2 0 .0 4 0 .0 6 0 .0 8 0 .1 0 .1 2 0 .1 4 0 .1 6

T im e  (s e c .)

D
is

pl
ac

em
en

t (
in

.)

B M 1
B M 2
B M 3
B M 4
B M 5

B M 1

B M 5



 

 108

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 0 .0 2 0 .0 4 0 .0 6 0 .0 8 0 .1 0 .1 2 0 .1 4 0 .1 6

T im e  (s e c .)

D
is

pl
ac

em
en

t (
in

.)

B M 1
B M 2
B M 3
B M 4
B M 5B M 5

B M 1

Figures 5.27, 5.28 and 5.29 present the maximum, horizontal displacements of the five, 

PC girders with the RC, X-braced and horizontal strut, and K-braced horizontal strut, 

intermediate diaphragms, respectively, when the 60-kip, impact load was applied at 16 ft away 

from the mid-span of Beam BM1.  The displacement-versus-time behaviors and the horizontal, 

displacement magnitudes for the three types of diaphragms were very close to each other.  The 

maximum, horizontal displacement for the impacted girder (Beam BM1), when the RC, X-

braced, and K-braced, intermediate diaphragms were used in the bridge, was 0.227 in., 0.227 in., 

and 0.219 in., respectively.  These maximum displacements all occurred at 0.075 sec. after the 

impact load was applied to Beam BM1.  This almost identical, displacement-versus-time 

behavior for the different types of intermediate diaphragms indicates that the diaphragm material 

and  configuration  had  a  minor  effect  on  the  maximum,  horizontal  displacements  that were 

 

 

 

 

 

 

 

 

 

 
 
 
 
      Figure 5.27.  Horizontal displacement versus time for the RC diaphragms (16-ft load 

                 offset on Beam BM1) 
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Figure 5.28.  Horizontal displacement versus time for the X-braced diaphragms 

          (16-ft load offset on Beam BM1) 
 

 

 
Figure 5.29.  Horizontal displacement versus time for the K-braced diaphragms  

                       (16-ft load offset on Beam BM1) 
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induced in the girders, when the impact load was applied on Beam BM1 at a location that was 

not at an intermediate diaphragm. 

Figures 5.30, 5.31 and 5.32 show the maximum, horizontal displacements of the five, PC 

girders with the RC, X-braced and horizontal strut, and K-braced and horizontal strut, 

intermediate diaphragms, respectively, when the 60-kip, impact load was applied at 16 ft away 

from the mid-span of Beam BM5.  An agreement was observed in the displacement-versus-time 

behaviors and horizontal, displacement magnitudes between these figures and the corresponding 

figures (Figs. 5.27, 5.28 and 5.29), when this same impact load applied to Beam BM1.  This 

agreement regarding the displacement of the girders supports the conclusion about the 

effectiveness of the diaphragm type with respect to the lateral stiffness of the bridge, when an 

impact load was applied to a girder at a point that was 16 ft away from the intermediate 

diaphragms. 

  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 5.30.  Horizontal displacement versus time for the RC diaphragms (16-ft load  

           offset on Beam BM5) 
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Figure 5.31.  Horizontal displacement versus time for the X-braced diaphragms  
                      (16-ft load offset on Beam BM5) 

 
Figure 5.32.  Horizontal displacement versus time for the K-braced diaphragms   

                       (16-ft load offset on Beam BM5) 
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5.3.3.  Strain and displacement comparisons 

 In this section, comparisons are presented between the strain and displacement results for 

the PC girders with the three types of intermediate diaphragms and without any intermediate 

diaphragms.  These comparisons will provide a basis to determine the effectiveness of 

intermediate diaphragms in reducing potential damage to the PC girders that might result from a 

lateral-impact load striking the bottom flange of one of the bridge girders.  Since damage might 

also occur for the girder that is adjacent to the impacted girder, strain and displacement 

comparisons are made for both of these girders. 

 
5.3.3.1.  Strain comparisons   

Figure 5.33 shows the maximum, principal-tensile strains in Beam BM1 with the RC, X-

braced and horizontal strut, and K-braced and horizontal strut, intermediate diaphragms and 

without intermediate diaphragms, when the 120-kip, lateral-impact load with duration time of 

0.10 sec. was applied at the mid-span of Beam BM1.  The notation ND that is shown in the 

figure represents no intermediate diaphragms.  As previously discussed in Section 5.3.1, the 

impacted girder (Beam BM1) was affected the most by the impact.  This girder is expected to 

experience the most severe damage.  Therefore, the strain results presented in this figure are only 

for the impacted girder.  As shown in Fig. 5.33, the use of RC, intermediate diaphragms 

produced the smallest magnitudes for the maximum, principal-tensile strains in Beam B1, when 

compared to those strains that were associated with the other three, diaphragm conditions.  When 

RC diaphragms were used, the maximum strain induced in Beam BM1 was about 26 percent of 

the maximum strain that was induced in this beam when intermediate diaphragms were omitted 

from the bridge.  The strain-versus-time behavior and the magnitudes for the maximum, 

principal-tensile strains in Beam BM1 were very similar for the two types of steel diaphragms.  
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The largest strains that were induced in Beam BM1, when the K-braced and X-braced, 

intermediate diaphragms were used, was about 37 percent and 40 percent, respectively, of that 

strain which was induced in Beam BM1 when intermediate diaphragms were not present in the 

bridge.  Although there was about 7-percent difference between the largest strains that were 

induced in Beam BM1 for the two types of steel diaphragms, this minor difference was 

considered insufficient to establish which one of the two, steel, intermediate diaphragms was the 

most effective in minimizing any potential damage to the impacted, PC girder, when the impact 

was at the diaphragm location. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.33.  Maximum principal-tensile strain in Beam BM1 versus time  
                      for the diaphragm conditions (no load offset on Beam BM1)  

  
 
 Figure 5.34 shows the distribution of the maximum, principal-tensile strains along the 

length of Beam BM1 for the different types of intermediate diaphragms and for the bridge 

without intermediate diaphragms.  The load associated with this figure was the same as that for 
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Fig. 5.33.  Due to the symmetry of the model and loading, the strain distribution was presented 

for a portion of one half of the length for the impacted beam.  Each of the strain distributions was 

established at the time when the principal-tensile strains at the mid-span, cross section for Beam 

BM1 was at its maximum magnitude.  This time was not the same for the different diaphragm 

conditions.  As shown in the figure, the absence of intermediate diaphragms in the bridge 

superstructure caused a longer portion of the impacted-beam length to be subjected to principal-

strain magnitudes that were close to the maximum, principal-tension strain than that for the same 

bridge with intermediate diaphragms.  When the 120-kip, impact load was applied to Beam BM1  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.34.  Maximum principal-tensile strain distribution along a portion of Beam 
                       BM1 for the diaphragm conditions (no load offset on Beam BM1) 
 

at the mid-span diaphragm location, the use of RC, intermediate diaphragms caused the smallest, 

principal-tensile strains to be induced in Beam BM1 and the shortest length for the larger 

magnitudes for these strains, than that for the other diaphragm conditions.  Both types of steel, 
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intermediate diaphragms had essentially the same effect on the magnitudes and distribution of 

the principal-tensile strains along the length of the impacted beam.   

To establish a more complete indication of any potential damage that a bridge might 

sustain when a PC girder is struck by an object that is transported on a vehicle which travels 

under a bridge, the ISU researchers also evaluated the maximum, principal-tensile strains that are 

induced in the girder adjacent to the impacted girder.  The purpose for this phase of the research 

was to determine whether intermediate diaphragms spread the impact force from the impacted 

girder to the other bridge girders.  Figure 5.35 illustrates the maximum, principal-tensile strains 

that are induced in Beams BM1 and BM2 when each of the types of intermediate diaphragm are 

used and when intermediate diaphragms are not used in a bridge.  The impact load that is 

associated with Fig. 5.35 is the same as that which is associated with Fig. 5.33.  The strain results 

that are presented in the figure for the different diaphragms were in the extreme fiber of the 

bottom flanges of Beams BM1 and BM2 at the girder cross section where the load was applied.  

For the no diaphragm condition, the maximum, principal-tensile strains were at the top fibers of 

web element for each of these girders.  For each intermediate-diaphragm condition, the 

maximum strains in Beams BM1 and BM2 were induced at different times after the impact load 

was applied to Beam BM1.  These times were when the largest strains were induced in these two 

girders.   

When intermediate diaphragms were not present, (the ND diaphragm type in Fig. 5.35) 

the impacted girder (Beam BM1) resisted the vast majority of the impact load, and the 

corresponding, principal-tensile strains were relatively large.  The strains that were induced in 

the girder (Beam BM2) that was adjacent to Beam BM1 were relatively very small.  As long as 

the over-height load  would  not  strike  any  other girder, as the vehicle  passed under the bridge,    
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      Figure 5.35.  Maximum principal-tensile strains in Beams BM1 and BM2 for the   

                diaphragm conditions in the non-skewed bridge (no load offset on 
                Beam BM1)   

 

only Beam BM1 would be possibly severely damaged by the impact.  When intermediate 

diaphragms were added to the bridge, the magnitude of the maximum, principal-tensile strains 

that were induced in Beam BM1 significantly decreased from the strain levels that occurred 

when intermediate diaphragms were not present in the bridge.  A significant decrease in these 

strains implies that a significant decrease for potential damage would occur for this girder.  On 

the other hand, the diaphragms transferred a portion of the impact load from the impacted girder 

to the other girders in the bridge.  As shown in Fig. 5.35, the portion of impact load that was 

transferred by the diaphragms to the other girders is affected by the type of intermediate 

diaphragm.  For the two, steel, intermediate diaphragms, larger strains were induced in Beams 

BM1 and BM2 than that for the RC, intermediate diaphragms.  This strain result was attributed 

to the geometry of the steel diaphragms and the existence of the horizontal struts.  These struts 

caused a direct transfer of a portion of the applied load from the bottom flange of Beam BM1 to 

the bottom flange of Beam BM2.  A comparison of the strain results for the two types of steel 
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diaphragms revealed that a 30-percent difference occurred for the maximum strains that are 

induced in Beam BM2.  This strain difference was attributed to the alignment of the steel-bracing 

members in the K-braced and X-braced diaphragms.  For the K-braced diaphragms, the diagonal-

bracing members did not extend to the bottom flange of a PC girder, and for the X-braced 

diaphragms, the diagonal-bracing members extended to the bottom flange of a girder.  As 

previously mentioned, the absence of a direct connection between the RC diaphragms and the 

bottom flanges of Beams BM1 and BM2 reduced the strains induced in Beam BM2 compared to 

those strains associated with the use of the steel diaphragms.  The use of the RC, intermediate 

diaphragms induced a maximum, principal-tensile strain in Beam BM2 that was 55 percent less 

than that associated with the use of the K-braced, intermediate diaphragms. 

A simplified, static-load study of the two types of steel, intermediate diaphragms was 

conducted to investigate their potential to spread impact damage to adjacent girders.  The 

simplified models for the K-braced and X-braced, intermediate diaphragms were made by 

representing the diagonal members and horizontal struts with truss-type, finite elements.  The 

bracing members and the horizontal struts were the only parts of the diaphragms that were 

modeled for the simplified analyses.  A horizontal strut was modeled as two, separate members 

(WT6x17.5 and W14x34).  Figure 5.36 shows the geometrical arrangement for these members 

and the axial forces that were induced in these members, when a 120-kip, static load was applied  

a. X-braced diaphragm 

        Figure 5.36.  Forces in the X-braced and K-braced diaphragms for the simplified  
         models 
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b.  K-braced diaphragm 

Figure 5.36.  Continued 
 

at the mid-span of Beam BM1.  The negative sign for a member force indicates a compressive 

force.    

To calculate the horizontal force that was transferred to each girder from an adjacent 

girder that was closer to Beam BM1, the horizontal components of the forces induced in the 

diaphragm members that were connected to that girder profile were added together.  The forces 

that were transferred to Beam BM2, when the X-braced and K-braced diaphragms were used in 

the model, were approximately 104 kips and 94 kips, respectively, and for Beam BM3, these 

transferred forces were 64 kips and 56 kips, respectively.  For Beams BM4 and BM5, these 

transferred forces were essentially the same, when either type of steel diaphragm was used.  An 

11-percent difference between the forces transferred to Beams BM2 and BM3 for the two types 

of steel diaphragms confirmed the conclusion that the X-braced diaphragms has the potential to 

cause slightly more damage to be spread to adjacent girders than that for the K-braced 

diaphragms.    

Figure 5.37 shows the maximum, principal-tensile strains in the impacted girder (Beam 

BM5) for the four, intermediate-diaphragm conditions, when the 120-kip, impact load was 

applied at the mid-span of Beam BM5.  During most of the 0.10-sec., load-duration time, the 

girder strains that were associated with RC, intermediate diaphragms were the smallest of these 

strains for the four, diaphragm conditions.  The use of the RC diaphragms reduced the maximum, 
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principal-tensile strains in Beam BM5 by about 82 percent from those strains that were induced 

in this beam, when intermediate diaphragms were omitted from the bridge.  The strain-versus-

time behavior of the two, steel diaphragms was almost the same, but the use of the K-braced 

diaphragms produced smaller strains in Beam BM5 than those that were associated with the use 

of the X-braced diaphragms.  The reduction in the maximum, principal-tensile strains for Beam 

BM5 from those strains that were associated with the no diaphragm condition that were produced 

by the use of K-braced and the X-braced diaphragms were about 75 percent and 69 percent, 

respectively.  Although there was about 15-percent difference in the strain magnitudes that were 

related to the use of the two, steel diaphragms, the ISU researchers believe that this strain 

difference was not sufficient enough to select the K-braced diaphragms as being more efficient 

than the X-braced diaphragms in reducing the potential for impact damage to the bridge PC 

girders. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.37.  Maximum principal-tensile strain in BM5 versus time for diaphragm  
           conditions (no load offset on Beam BM5) 



 

 120

Distributions of the maximum, principal-tensile strains along a portion of the length for 

the impacted girder (Beam BM5) for the four, diaphragm conditions, when the 120-kip, impact 

load was applied at the mid-span of Beam BM5, is presented in Fig. 5.38.  The strain response of 

each of the diaphragm conditions was at the time when the largest, principal-tensile strains 

occurred at the mid-span cross section for Beam B5.  This time was different for each of the 

diaphragm conditions.  The strain-versus-time behaviors that are presented in this figure were 

almost identical with those that were discussed for Fig. 5.34, when Beam BM1 was the impacted 

girder.  

 Another damage-spread study was conducted to establish the extent to which a particular 

intermediate-diaphragm condition would contribute to damage that may be induced in the other 

PC girders, when an impact load was applied at the mid-span of Beam BM5.  This study was 

similar to one that was discussed to explain the strain results shown in Fig. 8.35.  Figure 5.39 

shows the maximum, principal-tensile strains that were induced in the  

Beam BM5 and its adjacent girder (Beam BM4).    

    Figure 5.38.  Maximum principal-tensile strain distribution along a portion of BM5 
                 for the diaphragm conditions (no load offset on Beam BM5) 
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Figure 5.39.  Maximum principal-tensile strains in Beams BM5 and BM4 for  
                      the diaphragm conditions in the non-skewed bridge (no load 
           offset on Beam BM5) 

 
 
As expected, the no diaphragm condition produced minor strains in Beam BM4.  When 

compared to those strains that were associated with the no diaphragm condition, a significant 

decrease in the maximum, principal-tensile strains that were induced in the impacted beam 

occurred when intermediate diaphragms were installed in the bridge.  About a 13-percent 

difference in the strains that were induced in Beam BM4 occurred between for the two types of 

steel diaphragms.  This difference was probably caused by the geometric shape of the steel-

bracing members for X-braced diaphragms, which transferred loads to the bottom flange of 

Beam BM4.  For the K-braced diaphragms, the diagonal-bracing members were not connected to 

the bottom flange of the PC girders.  The use of the RC diaphragm produced relatively small 

strains in Beam BM4 compared to those strains that were associated with the use of the steel 

diaphragms.  About an 80-percent difference occurred for the maximum, principal-tensile strains 

that were induced in Beam BM4, when the RC diaphragms were used rather than the K-braced 

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

N D R C X -B R A C E K -B R A C E

D ia p h r a g m  ty p e

M
ic

ro
-s

tr
ai

n B M 5
B M 4

B M 5

B M 1



 

 122

diaphragms.  This relatively large, percent difference in the strains was due to the existence of 

the horizontal strut in the two, steel diaphragms that was located at the bottom flanges of the PC 

girders. 

 Figures 5.40 and 5.41 show the maximum, principal-tensile strains that are induced in the 

impacted girder for the different diaphragm conditions, when the 60-kip, lateral-impact load with 

a 0.10-sec., duration time was applied at 16 ft away from the mid-span of Beams BM1 and BM5, 

 

 
Figure 5.40.  Maximum principal-tensile strain in Beam BM1 versus time  
                      for the diaphragm conditions (16-ft load offset on Beam BM1) 

 

respectively.  For all cases, the largest strains were at the top fibers of the web, where the web 

was connected to the top flange.  The strain-versus-time behavior and the magnitude for these 

strains that are shown in these two figures are essentially identical.  The three types of 

intermediate diaphragms had almost the same strain response.  This strain behavior indicates that 

when  an  impact  load  is  applied  far  enough  away  from the diaphragm location, any potential  
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Figure 5.41.  Maximum principal-tensile strain in Beam BM5 versus time  
                      for the diaphragm conditions (16-ft load offset on Beam BM5) 

 
 
damage that would occur to a PC girder due to an over-height-vehicle impact does not depend on 

the type of intermediate diaphragms that were studied in this research.  This conclusion does not 

weaken the previous conclusion regarding the effectiveness of intermediate diaphragms in 

reducing potential, impact damage, as can be observed from Figs. 5.40 and 5.41 by comparing 

the strain-versus-time behaviors that are associated with the diaphragm and no diaphragm 

conditions.  As shown in these figures, the existence of any one of these three types of 

intermediate diaphragms reduced the maximum, principal-tensile strains in the impacted girder 

by about 25 percent compared to those strains that were associated with the no diaphragm 

condition.  This type of a strain reduction is expected to increase, when the lateral load is applied 

closer to the intermediate diaphragms.  A study involving impact loads that are applied closer to 

the intermediate diaphragms is discussed in Section 5.3.4. 
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5.3.3.2.  Displacement comparisons  

Figures 5.42 and 5.43 show the horizontal displacements at the bottom flange of the 

impacted girder, when the 120-kip, impact load was applied at the mid-span of Beams BM1 and 

BM5, respectively, for the four, intermediate-diaphragm conditions.  The displacement-versus-

time behavior and displacement magnitudes that are shown in these two figures are almost 

identical. The displacement results that are associated with the two, steel, intermediate 

diaphragms were basically the same.  Both the K-braced and horizontal strut and the X-braced 

and horizontal strut, intermediate diaphragms produced about a 48-percent reduction in the 

maximum, horizontal displacement of the impacted girder compared to that for the same bridge 

without intermediate diaphragms.  The use of the RC, intermediate diaphragms reduced the 

maximum, horizontal displacement of the impacted girder by about 58 percent compared to that 

displacement which was associated with the no diaphragm condition.  These displacement results 

demonstrate that a RC, intermediate diaphragm is more axially rigid than either type of steel, 

intermediate diaphragm. 

Figure 5.42.  Horizontal displacement of Beam BM1 versus time for the 
                      diaphragm conditions (no load offset on Beam BM1) 
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Figure 5.43.  Horizontal displacement of Beam BM5 versus time for the 
                      diaphragm conditions (no load offset on Beam BM5) 
 

The horizontal displacements at the bottom flange of the impacted girder, when the 60-

kip, impact load was applied at a distance of 16 ft away from the mid-span of Beams BM1 and 

BM5 are presented in Figs. 5.44 and 5.45, respectively.  A comparison of the displacement 

results that are shown in these two figures, revealed that the displacement-versus-time behavior 

and the displacement magnitudes for each intermediate-diaphragm condition are essentially the 

same.  The horizontal displacements of the impacted girder that were associated with all three 

intermediate-diaphragm types were almost identical up to the maximum displacement that 

occurred about 0.75 sec. after the start of the impact load.  About a 15-percent reduction the 

maximum, horizontal displacement of the loaded girder occurred because of the existence of any 

one of the three intermediate diaphragms, when compared with that displacement which 

occurred when the intermediate diaphragms were omitted from the same bridge.  These 

displacement results confirmed that the existence of any one of the three types of intermediate 

diaphragms that were investigated in this research increased the lateral rigidity of the bottom 

flanges for the girders above that for the same bridge without intermediate diaphragms. 
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Figure 5.44.  Horizontal displacement of Beam BM1 versus time for the 
                      diaphragm conditions (16-ft offset on Beam BM1) 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 5.45.  Horizontal displacement of Beam BM5 versus time for the 
                                  diaphragm conditions (16-ft offset on Beam BM5) 
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5.3.4.  Four foot load case 

 The effectiveness of intermediate diaphragms in reducing impact damage to PC-bridge 

girders depends on the location of the impact force relative to the location of the intermediate 

diaphragms.  The previous investigations for impact loads that were applied to PC girders were 

performed when these loads were at the diaphragm location or at 16 ft away from the diaphragm 

location.  As shown in Fig. 4.7, the point of impact for an over-height vehicle load that may hit 

the bottom flange of a PC girder is based on the width of the roadway passing underneath the 

bridge.  All three types of intermediate diaphragms that were investigated in this research 

provided the PC girders with essentially the same degree of impact protection when the impact 

load was applied at a distance that was 16 ft away from the diaphragms.  However, when the 

impact load was applied at the intermediate diaphragm location, different degrees of impact 

protection were provided by each diaphragm type.   

To investigate the effect of load impacts that are close to but not at the intermediate-

diaphragm location on the maximum, principal-tensile strains, which are induced in an impacted 

girder, a 4-ft offset for the impact load from the diaphragm location was selected for all four, 

intermediate-diaphragm conditions.  The 60-kip, impact load shown in Fig. 4.23b was applied as 

a pressure, as shown in Fig. 4.24.  Beam BM1 was considered as the impact girder in this study.  

The maximum, principal-tensile strain that were induced in this girder for the three types of 

intermediate diaphragms and for the same bridge without intermediate diaphragms is presented 

in Fig. 5.46.  Due to the rotational restraint about the longitudinal axis for a PC girder that is 

provided by the intermediate diaphragms, the location for the maximum, principal-tensile strains 

in the loaded girder was not the same for the bridge with and without intermediate diaphragms.   
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Figure 5.46.  Maximum principal-tensile strain in Beam BM1 versus time for 
                      the diaphragm conditions (4-ft load offset on Beam BM1) 

 

For the three types of intermediate diaphragms, the largest strains were in the bottom 

flange of the loaded girder and at the girder cross section where the impact load was applied.  

For the no diaphragm condition, the largest strains occurred in the top fibers of the web for this 

girder and at the girder cross section where the impact load was applied.  As shown in Fig. 5.46, 

the strain-versus-time behaviors and the strain magnitudes that were associated with the three 

types of intermediate diaphragms were still very close to each other.  Again, the strain results for 

the bridge with either type of steel, intermediate diaphragm were almost the same.  The use of 

either type of steel diaphragm reduced the maximum, principal-tensile strain that was induced in 

the impacted beam by about 36 percent compared to those strains that were associated with the 

bridge without intermediate diaphragms.   The use of the RC, intermediate diaphragms produced 

about a 40-percent reduction in the maximum strains, induced in the impacted girder, when 

compared to those strains for the no diaphragm condition.  These minor differences in the 

percent reduction in strain implied that the degree of impact protection for the impacted, PC 
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girder that is provided by each of the three types of intermediate diaphragm is essentially 

identical, when the impact load was applied at 4 ft from the diaphragm location. 

 
5.4.  Skewed bridge model 
 
  This section addresses the analytical results for the skewed-bridge, finite-element model 

shown in Fig. 4.16.  Bridges with a significant-skew angle have a staggered arrangement for the 

intermediate diaphragms.  The description of the finite-element model was presented in Section 

4.3.1.  Since variation in the magnitude of the dynamic-load factor (DLF) was small for all the 

intermediate diaphragm conditions that were investigated for the non-skewed-bridge model (see 

Section 4.4.3), the ISU researchers decided to conduct the investigations of the skewed-bridge 

models using a static analysis instead of a dynamic analysis.  The magnitudes and locations for 

the lateral loads that were applied to the skewed-bridge model are discussed in Section 4.4.3. 

Figure 5.47 shows the maximum, principal-tensile strains that were induced in the 

directly load girder (Beam BM1) for the four, intermediate-diaphragm conditions, when the 60-  

 

 

 

 

 

 

 

 

 
      Figure 5.47.  Maximum principal-tensile strains in Beams BM1 and BM2 for the 
                            diaphragm conditions in the skewed bridge (no load offset on Beam BM1) 
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kip, static load was applied to the bottom flange of Beam BM1 and at the mid-span, 

intermediate-diaphragm location.  The strain data presented in this figure are for the directly 

loaded girder (Beam BM1) and the adjacent girder (Beam BM2).  For the three types of 

intermediate diaphragms, the maximum strains in Beams BM1 and BM2 were in the bottom 

flange and at the girder cross section where the intermediate diaphragm was installed between 

these two girders.  When intermediate diaphragms were omitted (the ND-diaphragm type shown 

in Fig. 5.47) from the bridge, the maximum strains were in the top fibers of the web and at the 

location of the applied load.  Figure 5.47 shows that when intermediate diaphragms were omitted 

from the bridge, the 120-kip, inclined-plan-view, static load, which was applied to the mid-span 

of Beam BM1, induced a 548 micro-strains, maximum, principal-tensile strain in Beam BM1.  

For these same conditions, very small strains were induced in Beam BM2.   

The use of intermediate diaphragms in the bridge reduced these strains in the directly 

loaded beam (Beam BM1) and caused the transfer of a portion of the statically applied load to 

the adjacent beams.  The strain results that are shown in Fig. 5.47 for K-braced and horizontal 

strut and X-braced and horizontal strut, intermediate diaphragms are essentially the same.  

Therefore, the ISU researchers concluded that the two types of steel diaphragms provided 

basically the same amount of damage protection to the directly loaded girder (Beam BM1) and to 

the adjacent girder (Beam BM2).  The use of the RC diaphragms and either type of steel 

diaphragm provided about a 65-percent reduction and about a 39-percent reduction, respectively, 

in the maximum, principal-tensile strains that were induced in Beam BM1, when compared to 

those strains that were associated with the no diaphragm condition.  Although the RC 

diaphragms would provide more damage protection to the directly loaded girder (Beam BM1) 

than that which would be provided by the two types of steel diaphragms, the use of the RC 



 

 131

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

N D R C X -B R A C E K -B R A C E

D ia p h r a g m  ty p e

M
ic

ro
-s

tr
ai

n

B M 5
B M 4

B M 1

B M 5

diaphragms induced more strains in the adjacent girder (Beam BM2) than that which was 

induced by either type of steel diaphragm.  About a 70-percent increase occurred in the 

maximum, principal-tension strains that were induced in the Beam BM2 when the RC 

diaphragms rather than either type of steel diaphragm was used in the bridge.  This induced-

strain result for Beam BM2 contradicts a similar strain comparison that was made for the non-

skewed bridge (see Fig. 5.35).  The ISU researchers believe that this difference in the strains for 

the adjacent girder in skewed and non-skewed bridges was due to the staggered alignment of the 

intermediate diaphragms for the skewed bridge. 

Figure 5.48 presents the maximum, principal-tensile strains in Beams BM4 and BM4 for 

the four, intermediate-diaphragm conditions, when the 120-kip, inclined-plan-view, static load 

was applied at the mid-span diaphragm location on Beam BM5.   The  location for the maximum 

 

 

 

 

 

 

 

 

 

 
Figure 5.48.  Maximum principal-tensile strains in Beams BM5 and BM4 for 
                      the diaphragm conditions in the skewed bridge (no offset load 
                      on Beam BM5) 
 



 

 132

strains in the directly loaded girder and in the adjacent girder was the same as that associated 

with Fig. 5.47.  A comparison of Figs. 5.47 and 5.48 revealed a similar relationship for the strain 

magnitudes amongst the three types of intermediate diaphragms.  Again, the K-braced and 

horizontal strut and X-braced and horizontal strut, intermediate diaphragms cause essentially the 

same maximum, principal-tensile strains to be induced in the directly loaded girder and adjacent 

girder.   Based on the strain results that are shown in Fig. 5.48, the RC, intermediate diaphragm 

provided the directly loaded girder (Beam BM5) with a slightly better degree of damage 

protection than that provided by the two types of steel diaphragms.  About a 70-percent reduction 

and a 60-percent reduction in the maximum strains in the directly loaded girder (Beam BM5) 

was caused by the use of the RC diaphragms and by the use of either type of steel diaphragm, 

respectively, when compared to those strains for the same bridge without intermediate 

diaphragms.  Also based on the strain results that are shown in Fig. 5.48, the amount of potential 

damage to the adjacent girder that is caused by an impact load on Beam BM5 would be higher 

when the RC, intermediate diaphragms are used in the bridge than that when either the K-braced 

or X-braced, intermediate diaphragms are used in the bridge.  This conclusion is the same one 

that was made when Beam BM1 was the directly loaded girder (see Fig. 5.47).   

To study the behavior of the skewed-bridge when an over-height vehicle strikes an 

exterior girder at a location that was not at the intermediate diaphragms, two sets of structural 

analyses were performed for the modeled-bridge span with the four, intermediate-diaphragm 

conditions.  In one set of analyses, Beam BM1 was the directly loaded girder, and in the other set 

of analyses, Beam BM5 was the directly loaded girder.  A 60-kip, inclined-plan-view, static load 

was applied to these beams at a point that was 16 ft away from the intermediate diaphragms, as 

shown in Fig. 4.17. 
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Figure 5.49 shows the maximum, principal-tensile strains that were induced in the 

directly loaded girder (Beam BM1) when the load was applied at 16 ft away from the mid-span 

of Beam BM1.  All of the strains shown in Fig. 5.49 were induced in the top fiber of the girder 

web and at the girder cross section where the load was applied to Beam BM1.  The figure shows 

that the use of any one of the three types of intermediate diaphragms that were investigated in 

this research had essentially no effect on the maximum, principal-tensile strains that were 

induced in Beam BM1, when the lateral load was applied to a point that was at a substantial 

distance from the intermediate diaphragms in the skewed bridge.  This conclusion was not true 

for the non-skewed bridge with a similar loading condition.  Recall that for this lateral-load 

position on the non-skewed bridge, the type of intermediate diaphragm had an affect on the 

maximum, principal-tensile strains that were induced in Beam BM1.  The difference in the 

geometrical arrangement of the intermediate diaphragms for the non-skewed and skewed bridges  

 

 

    
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 5.49.  Maximum principal-tensile strains in Beam BM1 for the diaphragm 
                            conditions in the skewed bridge (16-ft offset load on Beam BM1) 
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caused this difference in the maximum, principal-tensile strains in the directly loaded girder for 

these bridge geometries. 

 
5.5.  Maximum principal-tensile strain locations 

 The finite-element models for the non-skewed and skewed, prototype, PC-girder bridges, 

which were subjected to a lateral load, predicted that the location of the maximum, principal-

tensile strains is dependant on the impact location.  When the impact was on the bottom flange of 

a PC girder at an intermediate diaphragm location, the maximum, principal-tensile strains were 

induced in the bottom flange of the impacted girder at the diaphragm location.  When the impact 

was on the bottom flange of a PC girder at a significant distance away from an intermediate 

diaphragm location, the maximum, principal-tensile strains were induced in the upper portion of 

web just below the top flange of the impacted girder at the location of the impact.  When the 

impact was on the bottom flange of a PC girder at a location that was adjacent to but not at an 

intermediate diaphragm location, the maximum principal-tensile strains were induced in the web 

just below the top flange of the impacted girder at the location of the impact and large principal-

tensile strains were also induced in the bottom flange of the impacted girder at the diaphragm 

location.  Figure 5.50 shows regions of a PC girder where close observations need to be made 

during field inspections of an impacted bridge to assess potential damage to the PC girder. 
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Figure 5.50.  Locations for maximum principal-tensile strains 

(b) Impact away from the intermediate diaphragm location 

Maximum tensile strains in remaining PC girders 
Maximum tensile strains in impacted PC girder 

Impact location

Pier diaphragm Mid-span diaphragm 

(a) Impact at the intermediate diaphragm location 

Impact location 

(a) Maximum tensile strains in all PC girders 

(c) Impact near the intermediate diaphragm location 

Impact location 
Maximum tensile strains in impacted PC girder 

Maximum tensile strains in remaining PC girders
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6.  CLOSING REMARKS 

6.1.  Summary 

 This research analytically evaluated the maximum, principal-tensile strains in the PC 

girders and the maximum, horizontal displacements at the bottom flanges for the PC girders of a 

non-skewed bridge and a skewed bridge.  These strains and displacements were induced by a 

lateral load, which was applied to the bottom flange of either exterior girder for the bridge.  This 

load was either a single-magnitude, dynamic-load pulse or a static, concentrated load that was 

not intended to actually model the collision forces that occur when an over-height vehicle or 

vehicle load strikes a bridge girder.  The hypothetical, dynamic load and the static load were 

used to establish a qualitative comparison of the maximum, principal-tensile strains and 

horizontal displacements for the bridge girders to determine the effectiveness of intermediate 

diaphragms in reducing the potential damage sustained to the PC girders when an exterior girder 

was subjected to a simulated, lateral-impact load.  This research also investigated the possibility 

of substituting a steel, intermediate diaphragm, which has a practical configuration and 

connection details, as an alternative for the RC, intermediate diaphragms that are currently used 

by the Iowa DOT in PC-girder bridges.  The steel, intermediate diaphragm needs to provide the 

bridge girders with essentially the same degree of impact-damage protection as that which is 

provided by the current RC diaphragm. 

 A literature search was conducted to review publications related to the use of 

intermediate diaphragms in resisting lateral loads.  Several domestic and international data bases 

were used for this search.  Most of the publications discussed diaphragm effectiveness in 

laterally distributing wheel loads.  Only a few publications addressed the resistance of 

intermediate diaphragms to lateral loads.  Different points of view regarding the lateral-load-
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resistance effectiveness of diaphragms were documented in the literature.  Some of the opinions 

and conclusions in these publications contradicted each other about whether intermediate 

diaphragms are useful or harmful in PC-girder bridges. 

 A survey was conducted of the departments of transportation in all fifty states to 

determine the types of intermediate diaphragms that are currently used by their design agencies 

and to establish the methods that are used to design these diaphragms.  The survey included 

questions related to the types of intermediate diaphragms for PC-girder bridges when a bridge is 

crossing a highway, a navigable waterway, a railroad right-of-way, or a grade separation without 

traffic beneath the bridge. 

 Before a finite-element model for a PC-girder bridge with intermediate diaphragms can 

be used to predict member strains and displacements, calibration of a similar model that 

incorporates the specific details that will be used in the final models needs to be performed by 

comparing predicted responses with known measured values.  This calibration was done using 

experimentally measured, girder strains and displacements from published test results.  The 

purpose of this calibration study was to develop the type of finite elements and the appropriate 

mesh size that should be used in modeling PC-girder bridges.  Several sizes of finite-element 

meshes and detail-modeling techniques were investigated to improve the accuracy of the 

predicted results. 

 Two, four-span, Iowa DOT, PC-girder bridges were used as prototype bridges for 

creating the finite-element models that were used in this research.  One of these bridges was 

essentially a non-skewed bridge and the other one was a 30-deg., skewed bridge.  Due to the 

complexity of the finite-element models and the large amount of computer time that was required 

to solve a complete-bridge model, only one of the two, interior spans was modeled for the final 
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analyses.  The accuracy of using single-span models was verified by computing displacements 

and strains for the PC girders that were predicted by both the single-span and four-span models 

and then comparing these results.  This single-span-model simplification was proven not to 

significantly affect the displacement results for the PC girders.  The model simplification 

produced less than a 15-percent underestimation of the maximum, principal-tensile strains in the 

PC girders. 

 Three types of intermediate diaphragms that were located at the mid-span of the girders 

were considered in this study.  These diaphragms were a RC diaphragm, an X-braced with 

horizontal strut, steel diaphragm, and a K-braced with horizontal strut, steel diaphragm.  The 

three types of diaphragms are currently used by the Iowa DOT in PC-girder bridges. 

 In the study of the non-skewed bridge, the two, exterior girders were loaded by a lateral-

impact load that was used to simulate the effect of an over-height vehicle or vehicle load striking 

the bottom flange of a PC girder when the vehicle passed beneath the bridge.  In the study of the 

skewed bridge, a static rather than a dynamic load was used to simplify the analytical solution.  

This static-load-modeling simplification was determined not to significantly affect the 

displacement and strain results for the PC girders because the dynamic-load factor for the non-

skewed, bridge model with the different intermediate-diaphragm conditions was between 1.15 

and 1.20.  A lateral load was applied at the mid-span, cross section for the impacted girder or at 

16 ft from the mid-span.  To study the diaphragm effectiveness in reducing the potential damage 

to the PC girders when the lateral load was close to the diaphragm location, the models were 

analyzed for an impact load on one of the exterior girders at four feet from the diaphragm 

location. 
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 A qualitative prediction for the occurrence of damage to a PC girder that was caused by 

an impact load was based on the magnitude of the maximum, principal-tensile strains that were 

induced in each PC girder.  To predict the effectiveness of a particular type of intermediate 

diaphragm in providing impact protection for a PC girder, these strains for the impacted girder 

were compared to those strains that were induced in that same girder, when intermediate 

diaphragms were omitted from the bridge span.  The spread of damage to other girders was 

examined in similar ways.  These strain results that were associated with the different types of 

intermediate diaphragm were compared to each other to determine the relative effectiveness of 

each diaphragm type in preventing damage to a PC girder. 

 
6.2.   Conclusions 

 The following conclusions were made from this study: 

• Approximately 75 percent of the state departments of transportation returned the survey 

questionnaire.  Almost 95 percent of the respondents use intermediate diaphragms in PC-

girder bridges.  Less than 40 percent of the respondents use structural-steel diaphragms in 

PC-girder bridges, and about 95 percent of them permit their use of cast-in-place, RC 

diaphragms, when a bridge crosses over a highway.  Approximately 70 percent of the 

respondents documented that they do not use intermediate diaphragms to minimize the 

potential damage to the PC girders that would result from impact forces that are caused 

by an over-height vehicle or vehicle load passing beneath the bridge. 

• The ANSYS, finite-element method has the capabilities to accurately model PC-girder 

bridges with complex connection details between the intermediate diaphragms and the 

girders, when lateral-impact loads are applied to the structure.  During the calibration 

process for establishing the proper modeling details, predicted member strain and 
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displacement results were compared to those measured results from a previous research 

study (Abendroth, et al. 1991).  An average, maximum, difference of 20 percent was 

observed in the strain and displacement results that were predicted by a finite-element 

model and those results that were measured during the previous testing of an 

experimental bridge.  These differences could have resulted from the presence of 

concrete cracks in the bridge deck for that experimental bridge.  Concrete cracks were not 

included in the idealization of the bridge structure for the finite-element analysis. 

• Modeling only one of the spans instead of modeling all four spans of the bridge for the 

finite-element analysis, did not significantly affect the overall bridge responses for that 

single span.  A comparison of the displacement and strain responses that were predicted 

by the two, analytical models revealed that the difference in the horizontal displacements 

of the girders were insignificant and the difference in the maximum, principal-tensile 

strains, which were induced in the impacted girder, was less than 15 percent. 

• The dynamic-load factor (DLF) for the induced, maximum, principal-tensile strains in the 

PC girder that was subjected to the impact load was in the range of 1.15 to 1.20 for the 

three, intermediate diaphragms that were investigated in this research.  This small range 

for the DLF indicated that the type of intermediate diaphragm had a minor effect on the 

dynamic characteristics of the PC girder bridge. 

• Although the K-braced with horizontal strut, intermediate diaphragm may provide PC-

bridge girders with a slightly better degree of impact-damage protection than that which 

may be provided by the X-braced with horizontal strut, intermediate diaphragm, the 

difference in performance between these two types of steel diaphragms was not sufficient 

to recommend using the K-braced diaphragm instead of the X-braced diaphragm. 
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• Both the X-braced with a horizontal strut and K-braced with a horizontal strut, 

intermediate diaphragms essentially provided the same degree of rigidity to a bridge 

structure.  This conclusion was reached by observing essentially equal, horizontal 

displacements at the bottom flange of a directly loaded girder in bridges with these two 

types of diaphragms. 

• The RC, intermediate diaphragms would provide the PC-bridge girders with a higher 

degree of impact-damage protection than that provided by the two types of steel 

diaphragms, when a lateral-impact load was applied directly at the diaphragm location. 

• A comparison of the horizontal displacements of the PC girders in a bridge span with the 

RC, intermediate diaphragms and another, identical, bridge span with either the K-

braced, or X-braced intermediate diaphragms, revealed that the RC diaphragm was more 

axially rigid than that for either type of steel diaphragm. 

• The RC, intermediate diaphragm has a slightly greater capability of limiting extent of the 

potential damage along the length of the impacted girder than that for either the K-braced 

with horizontal strut or the X-braced with horizontal strut, intermediate diaphragms. 

• For the non-skewed bridge, both the K-braced with horizontal strut and the X-braced with 

horizontal strut, intermediate diaphragms would permit more damage to occur in the PC 

girder that is adjacent to the impacted girder than that for the RC, intermediate 

diaphragms.  Even though the RC, intermediate diaphragm had more axial rigidity than 

that for either of two, steel diaphragms, the RC diaphragm was less capable of spreading 

impact damage to the adjacent bridge girder because of this diaphragm’s geometrical 

configuration and connections to the bridge girders. 
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• For the skewed bridge, both the K-braced with horizontal strut and the X-braced with 

horizontal strut, intermediate diaphragms provided more impact-damage protection to the 

girder that was adjacent to the impacted girder than that provided by the RC, intermediate 

diaphragms.  This damage assessment, which was the reverse of that for the non-skewed 

bridge, was caused by the staggered arrangement of the diaphragms in the skewed bridge 

compared to the aligned arrangement of the diaphragms in the non-skewed bridge. 

• The diaphragm type had a significant effect on the amount of impact-damage protection 

that was provided for the PC-bridge girders when the impact force was at the diaphragm 

location. 

• The diaphragm type did not have any significant effect on the amount of impact-damage 

protection that was provided for the PC-bridge girders, when the impact force was 

applied at even a relatively small distance from the diaphragm location. 

• When an over-height vehicle or vehicle load strikes a bridge girder at a point that is not at 

a diaphragm location, the existence of intermediate diaphragms would reduce the amount 

of damage to the PC-bridge girders. 

• For most geometrical alignments for highway overpasses, an over-height vehicle or 

vehicle load that travels beneath a bridge would strike a bridge girder at a point that is not 

at a diaphragm location.  Then, the RC, K-brace with horizontal strut, or the X-brace with 

horizontal strut, intermediate diaphragm could be used in a PC-girder bridge and 

essentially the same degree of impact-damage protection would be provided to the bridge 

girders by each of these types of intermediate diaphragms. 
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6.3.   Recommendations for future work 
 
 The following recommendations for future work were made to provide a better 

understanding of the effects that impact loads have on PC-girder bridges. 

• More experimental testing should be conducted to investigate the effect of the type of 

intermediate diaphragm when an impact load is applied to a PC girder at a point which is 

at or not at a diaphragm location. 

• More advanced, finite-element analyses should be performed to more accurately predict 

girder strains and displacements that are caused by impact loads.  In these analyses, 

concrete cracking and the prestressing forces in the PC girders should be incorporated 

into the finite-element models. 

• A more expanded study should be conducted on the effect of the magnitude and duration 

time of an impact load on the overall response of PC-girder bridges. 
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APPENDIX   A:  DESIGN AGENCY QUESTIONNAIRE RESULTS 

 
The number shown in (  ) represents the number of design agencies that have selected this 

answer.  The notes between [  ] are the agencies comments on specific questions. 
 
Part I.  State or Agency and Policy on the Use of Intermediate Diaphragms 
 
1. Is your state or agency currently specifying any type of intermediate diaphragms for PC 

bridges? 
 
 ( 36 ) Yes 
 
 (  2  ) No (If you answered no, please skip to Question 5 in this part of the survey.) 
 
2. Does your state or agency use structural-steel, intermediate diaphragms in PC girder 

bridges?  
 
 ( 14  ) Yes 
 
 ( 22  ) No (If you answered no, please skip to Part II of the survey.) 
 
3. Why does your state or agency use structural-steel, intermediate diaphragms in PC girder 

bridges?  (Please check all that apply.) 
 
 ( 3  ) State or agency requirement. 
 ( 1  ) To facilitate the use of stay-in-place, precast panel or metal deck forms that are 

used in  bridge decks. 
 ( 6  ) Bridge contractors have not chosen to use a reinforced concrete diaphragm 

alternate. 
 (10 ) Other reason (please specify) __[Its faster, easier and cheaper than cast-in-place 

concrete diaphragms] 
 
 (Please skip to Part II of the survey.) 
 
4. Has your state or agency ever specified intermediate diaphragms for PC bridges? 

 
 ( 8 ) Yes 
 
 ( 0 ) No  
   (If you answered no, please stop here.  Do not complete the rest of the 

survey.  Please return the survey in the enclosed, postage-prepaid, self-
addressed envelope.  
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5. When did your state or agency discontinue using intermediate diaphragms for PC  
bridges? 

 ( 0  ) Date is not known. 
 
 ( 4 ) Date is known.  
 
When? _____________________________________________ 
 
6. Why did your state or agency discontinue using intermediate diaphragms for PC bridges? 
 
 ( 0 ) Reason is not known. 
 
 ( 4 ) Reason is known.  
 
Why? [Based on research results, which demonstrated that intermediate diaphragms do not affect 

live load distribution]  
   
Note: Please answer the remaining questions in this survey with respect to the last time 

intermediate diaphragms were used in PC girder bridges. 
 
 
Part II.  Intermediate Diaphragm Construction Material 
 
1. What type of intermediate diaphragm material is permitted by your state or agency when 

a PC girder bridge is above a highway where an over-height vehicle or load could impact 
against a girder bottom flange?  (Please check all that apply.) 

 
 ( 35 ) Cast-in-place RC concrete 
 (  4  ) Precast concrete 
 (  9  ) Rolled steel channel shape 
 (  0  ) Welded steel channel shape 
 (  2  ) Rolled steel I-shape 
 (  0  ) Welded steel I-shape 
 (  3  ) Steel truss 
 (  5  ) Steel cross bracing 
 (  4  ) Other      [Bent plate steel diaphragms] 
 
2. What type of intermediate diaphragm material is permitted by your state or agency    

when a PC girder bridge is above a navigable waterway where an over-height vessel or 
load could impact against a girder bottom flange?  (Please check all that apply.) 

 
 ( 32 ) Cast-in-place RC concrete 
 ( 4 ) Precast concrete 
 ( 7 ) Rolled steel channel shape 
 ( 0 ) Welded steel channel shape 
 ( 1 ) Rolled steel I-shape 
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 ( 0 ) Welded steel I-shape 
 ( 3 ) Steel truss 
 ( 5 ) Steel cross bracing 
 ( 4 ) Other [Bent plate steel diaphragms] 
 
3.   What type of intermediate diaphragm material is permitted by your state or agency when 

a PC girder bridge is above a railroad right-of-way where an over-height load could  
impact against a girder bottom flange?  (Please check all that apply.) 
 

 ( 34 ) Cast-in-place RC concrete 
 (  4  ) Precast concrete 
 (  8  ) Rolled steel channel shape 
 (  0  ) Welded steel channel shape 
 (  2  ) Rolled steel I-shape 
 (  0  ) Welded steel I-shape 
 (  3  ) Steel truss 
 (  5  ) Steel cross bracing 
 (  4  ) Other [Bent plate steel diaphragms : no PC girder bridges over railroad] 
 
4. What type of intermediate diaphragm material is permitted by your state or agency when 

a PC girder bridge is above a grade separation that has no traffic (highway, water, or 
rail) of any type below the girders?  (Please check all that apply.) 

 
 ( 33 ) Cast-in-place RC concrete 
 (  4  ) Precast concrete 
 (  8  ) Rolled steel channel shape 
 (  0  ) Welded steel channel shape 
 (  1  ) Welded steel channel shape 
 (  0  ) Welded steel I-shape 
 (  3  ) Steel truss 
 (  5  ) Steel cross bracing 
 (  4  ) Other [Bent plate steel diaphragms] 
 
 
Part III.  Design Criteria for Intermediate Diaphragms in PC Girder Bridges 
 
1. Are intermediate diaphragms used for temporary lateral support of the PC girders during 

the construction of the bridge? 
 
 ( 32 ) Yes 
 
 (  6  ) No 
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2. Are intermediate diaphragms used to minimize damage to the PC girders that would be  
caused by impacts from over-height traffic beneath the bridge? 

 
 ( 12 ) Yes 
 
 ( 26 ) No 
 
3. Has your state or agency developed a structural-steel, intermediate diaphragm that can be 

used by bridge contractors as an alternate to a RC or PC, intermediate diaphragm in PC 
girder bridges which could have over-height traffic beneath the bridge? 

 
 ( 9 ) Yes 
 
 (29 ) No 
 
4. Are specific criteria applied to establish the design of an intermediate diaphragm?  (Note: 

This question only applies to the diaphragm itself and does not apply to the connections 
of the diaphragm to the PC girders and/or bridge deck.) 

 
 ( 1 ) Yes Note:  A yes answer would not apply to a rule-or-thumb criteria. 
 
 (36 ) No Note:  A no answer would apply to a rule-of-thumb criteria. 
 

Note:  If you answered no to this question, please skip to Question 8 in this part of the 
survey  

 
5. Does your state or agency use a static-lateral load to represent a lateral impact load, as a 

loading condition for the design of an intermediate diaphragm? 
 
 ( 0 ) Yes 
 
 ( 2 ) No 
 
6. Does your state or agency use a dynamic-lateral load to represent a lateral impact load, as 

a loading condition for the design of an intermediate diaphragm? 
 
 ( 0 ) Yes 
 
 ( 2 ) No 
 
7. What design criteria are applied to establish the size of an intermediate diaphragm? 

 
 ( 1 ) No specific design criteria. 
 
 ( 1  ) Specific design criteria  (please specify)    [Bridge cross section acts as a rigid 

body without deformation] 



 

 151

8. Are specific criteria applied to establish the design of the connections between an 
 intermediate diaphragm and the PC girders and/or bridge deck? 
 

 ( 1  ) Yes Note:  A yes answer would not apply to a rule-or-thumb criteria. 
 
 ( 37 ) No Note:  A no answer would apply to a rule-of-thumb criteria. 
 
 Note:  If you answered no to this question, please skip to Part IV of the survey. 
 
9. Does your state or agency use a static-lateral load to represent a lateral impact load, as a 

loading condition for the design of the connections between an intermediate diaphragm 
and the PC girders and/or bridge deck? 

 
 ( 0 ) Yes 
 
 ( 2 ) No 
 

10. Does your state or agency use a dynamic-lateral load to represent a lateral impact load, as 
 a loading condition for the design of connections between an intermediate diaphragm and  
 the PC girders and/or bridge deck? 
 
 ( 0 ) Yes 
 
 ( 2 ) No 
 

11. What design criteria are applied to establish the connection between an intermediate  
 diaphragm and the PC girders?    
 
 ( 0  ) No mechanical connection exists between an intermediate diaphragm and a PC 

girder. 
 
 ( 1  ) No specific design criteria. 
 
 ( 1  ) Specific design criteria  (please specify)      [Shear friction design]  
 
12. What design criteria are applied to establish the connection between an intermediate 
  diaphragm and the bridge deck? 
 
 ( 1  ) No mechanical connection exists between an intermediate diaphragm and the 

bridge deck.. 
 
 ( 0  ) No specific design criteria. 
 
 ( 1  ) Design criteria  (please specify)        [Interface shear design]  
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Part IV.  Impact Protection Performance of Intermediate Diaphragms 
 
Complete the following table by placing a check mark in the appropriate cell to rate the overall 
performance of the listed intermediate diaphragm types in minimizing the damage to the PC girders 
caused by all incidences of lateral impacts from over-height vehicles or over-height loads striking a PC 
girder. 
 
Note:  If a particular intermediate diaphragm type listed is not used by your state or   
agency, leave that particular row in the table blank. 
 

Intermediate 
Diaphragm 
Type 

Intermediate Diaphragm Performance Rating Regarding Protection  
to PC Girders from Impacts Caused by Over-Height Vehicles or  
Over-Height Loads 

 Excellent Good Average Fair Poor Comments 

Cast-in-place 
RC concrete 

(12) (13) (4) (1) (1)  

Precast 
concrete 

(2) (0) (1) (0) (0)  

Rolled steel 
channel shape 

(1) (2) (4) (0) (0)  

Welded steel 
channel shape 

(0) (0) (0) (0) (0)  

Welded steel 
channel shape 

(0) (0) (0) (0) (0)  

Welded steel 
I-shape 

(0) (0) (0) (0) (0)  

Steel truss (0) (2) (2) (0) (0)  

Steel cross 
bracing 

(0) (0) (0) (0) (0)  

Other 
(specify) 

(0) (1) (0) (0) (0)  

 
 
Part V.  Additional Comments 
 
In the space below, please write your comments on any topic associated with the use of 
intermediate diaphragms in PC girder bridges. 
 
[Most damage happens at the bottom flange: A strike any where near the diaphragm shatters the 
beam: More damage between diaphragms: Damage is felt to be unrelated to type of diaphragms: 
Research proved that diaphragms are only necessary in the case of skewed and curved bridges: 
Corrosion is a problem in steel diaphragms]   
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Part VI.  Intermediate Diaphragm Details and Specifications 
 
Please send us a copy of your standard details and specifications for all types of intermediate 
diaphragms that are used for PC girder bridges by your state or agency.  We are particularly 
interested in receiving information about structural-steel, intermediate diaphragms that have been 
developed by your state or agency and that can be used by bridge contractors as an alternate to 
RC or PC intermediate diaphragms in PC girder bridges which could be struck by over-height 
vehicles or loads. 
 
 
Part VII.  Survey Evaluation 
 
Please indicate those questions that you had difficulty in answering by listing the survey part and 
the question numbers below (i.e., III-2 for Part III, Question 2). 
 
 
Part VIII.  Summary 
 
Do you want to receive a copy of a summary of the survey results? 
 
( 35 ) Yes   ( 35  ) No 
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